如图,A、P、B、C是⊙O上的四点,∠APC =∠BPC = 60°, AB与PC交于Q点.
(1)判断△ABC的形状,并证明你的结论;
(2)求证:;
(3)若∠ABP = 15°,△ABC的面积为 4,求PC的长.
(1) ∵ ∠ABC =∠APC = 60°,∠BAC =∠BPC = 60°,
∴ ∠ACB = 180°-∠ABC-∠BAC = 60°,
∴ △ABC是等边三角形.
(2)如图,过B作BD∥PA交PC于D,
则 ∠BDP =∠APC = 60°.
又 ∵ ∠AQP =∠BQD,
∴ △AQP∽△BQD, .
∵ ∠BPD =∠BDP = 60°, ∴ PB = BD.
∴ .
(3)设正△ABC的高为h,则 h = BC? sin 60°.
∵ BC ? h = 4, 即BC ? BC? sin 60° = 4,解得BC = 4.
连接OB,OC,OP,作OE⊥BC于E.
由△ABC是正三角形知∠BOC = 120°,从而得∠OCE = 30°,
∴ .
由∠ABP = 15° 得 ∠PBC =∠ABC +∠ABP = 75°,于是 ∠POC = 2∠PBC = 150°.
∴ ∠PCO =(180°-150°)÷2 = 15°.
如图,作等腰直角△RMN,在直角边RM上取点G,使∠GNM = 15°,则∠RNG = 30°,
作GH⊥RN,垂足为H.设GH = 1,则 cos∠GNM = cos15° = MN.
∵ 在Rt△GHN中,NH = GN ? cos30°,GH = GN ? sin30°.
于是 RH = GH,MN = RN ? sin45°,∴ cos15° = .
在图中,作OF⊥PC于E,
∴ PC = 2FD = 2 OC ?cos15° = .
科目:初中数学 来源: 题型:
4 | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com