分析 连接OD、OE,设AD=x,根据正方形的判定求出四边形ODCE是正方形,推出OD∥BC,根据相似三角形的判定得出△AOD∽△ABC,得出比例式,代入即可求出答案.
解答 解:连接OD、OE,设AD=x,
∵半圆分别与AC、BC相切于点D、E,
∴∠CDO=∠CEO=90°,CD=CE,
又∵∠C=90°,
∴四边形ODCE是正方形,
∴OD∥BC,
∴△AOD∽△ABC,
∴$\frac{AD}{AC}$=$\frac{OD}{BC}$,
又∵AC=4,
∴OD=CD=4-x,
又∵BC=6,
∴$\frac{x}{4}$=$\frac{4-x}{6}$,
解得:x=1.6,
∴AD=1.6.
点评 本题考查了切线的性质,正方形的性质和判定,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -1 | B. | -5 | C. | 0 | D. | -21 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com