精英家教网 > 初中数学 > 题目详情

如图,A、B两点在函数y=(x>0)的图象上.
(1)求m的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.

(1)m=6 直线AB的解析式为y=﹣x+7  (2)3

解析试题分析:(1)将A点或B点的坐标代入y=求出m,再将这两点的坐标代入y=kx+b求出k、b的值即可得到这个函数的解析式;
(2)画出网格图帮助解答.
解:(1)由图象可知,函数(x>0)的图象经过点A(1,6),
可得m=6.
设直线AB的解析式为y=kx+b.
∵A(1,6),B(6,1)两点在函数y=kx+b的图象上,

解得
∴直线AB的解析式为y=﹣x+7;
(2)图中阴影部分(不包括边界)所含格点是(2,4),(3,3),(4,2)共3个.

考点:反比例函数的图象;待定系数法求一次函数解析式.
点评:本题考查了一次函数和反比例函数的图象性质,综合性较强,体现了数形结合的思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=
k2x
(x>0)
的图象交于A(1精英家教网,4),B(3,m)两点.
(1)求反比例函数的解析式;
(2)求△AOB的面积;
(3)如图写出反比例函数值大于一次函数值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(-3,0)、C(0,
3
),且当x=-4和x=2时二次函数的函数值y相等.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N精英家教网,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象相交于A、B两点,且点B的纵坐标为-
1
2
,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数和一次函数的关系式;
(2)直接写出反比例函数值大于一次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盐都区一模)已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒
5
个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
mx
(m≠0)的图象相交于A、B两点.求:
(1)根据图象写出A、B两点的坐标并求出反比例函数的解析式;
(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值;
(3)求△AOB的面积.

查看答案和解析>>

同步练习册答案