分析 直接把点A(-1,0)、B(3,0)代入抛物线y=x2+bx+c,求出b、c的即可得出其解析式,再求出y=3时x的值,根据函数的对称性即可得出结论.
解答 解:∵物线y=x2+bx+c与x轴相交于A(-1,0)、B(3,0)两点,
∴$\left\{\begin{array}{l}{1-b+c=0}\\{9+3b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-2}\\{c=-3}\end{array}\right.$,
∴抛物线的解析式为y=x2-2x-3.
当y=-3时,x2-2x-3=-3,解得x=0或x=2.
∵抛物线开口向上,
∴y>-3时,x<0或x>2,
故答案为:x<0或x>2.
点评 本题考查的是抛物线与x轴的交点,熟知x轴上点的坐标特点是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com