精英家教网 > 初中数学 > 题目详情
如图,AD、AE分别为△ABC的高和角平分线,∠B=35°,∠C=45°,求∠DAE的度数.
分析:根据三角形内角和定理求得∠BAC的度数,则依据角平分线的定义求得角∠EAC,然后在直角△ACD中,求得∠DAC的度数,则∠DAE=∠CAE-∠DAC即可求解.
解答:解:在△ABC中,∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC,
∵∠B=35°,∠C=45°,
∴∠BAC=100°,∠DAC=45°,
∴∠CAE=50°,
∴∠DAE=∠CAE-∠DAC=5°.
点评:本题考查了三角形的内角和定理以及角平分线的定义,理解定理是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AD、AE、BC都是⊙O的切线,切点分别为D、E、F,若AD=6,则△ABC的周长为
12cm
12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD、AE、CB都是⊙O的切线,切点分别为D、E、F,AD=4cm,则△ABC的周长是
8cm
8cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD、AE、CB均为⊙O的切线,D、E、F分别为切点,AD=8,则△ABC的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,AD、AE分别为△ABC的高和角平分线,∠B=35°,∠C=45°,求∠DAE的度数.

查看答案和解析>>

同步练习册答案