精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于精英家教网M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
分析:(1)解题的关键是作辅助线ME、MN,证明出来△EBA≌△MNF,把需要解决的问题转化成解直角三角形的问题,利用勾股定理解答.
(2)根据(1)的答案,利用二次函数的最值问题即可求出.
解答:精英家教网解:(1)连接ME,设MN交BE于P,根据题意,得
MB=ME,MN⊥BE.(2分)
过N作AB的垂线交AB于F.
在Rt△MBP中,∠MBP+∠BMN=90°,
在Rt△MNF中,∠FNM+∠BMN=90°,
∴∠MBP=∠MNF.
在Rt△EBA与Rt△MNF中,
∵AB=FN,
∴Rt△EBA≌Rt△MNF,故MF=AE=x.
在Rt△AME中,AE=x,ME=MB=AB-AM=2-AM,
∴(2-AM)2=x2+AM2
4-4AM+AM2=x2+AM2,即4-4AM=x2
解得AM=1-
1
4
x2.(5分)
所以梯形ADNM的面积S=
AM+DN
2
×AD=
AM+AF
2
×2
=AM+AF=AM+AM+MF=2AM+AE
=2(1-
1
4
x2)+x
=-
1
2
x2+x+2
即所求关系式为s=-
1
2
x2+x+2.(8分)

(2)s=-
1
2
x2+x+2=-
1
2
(x2-2x+1)+
5
2
=-
1
2
(x-1)2+
5
2

故当AE=x=1时,四边形ADNM的面积S的值最大,最大值是
5
2
点评:此题的综合性比较强,涉及面较广,涉及到正方形的性质,线段垂直平分线的性质及勾股定理的运用,在解答此题时要连接ME,过N点作AB的垂线再求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案