精英家教网 > 初中数学 > 题目详情

【题目】为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量,x(吨)与应付水费(元)的函数关系如图.

(1)求出当月用水量不超过5吨时,y与x之间的函数关系式;

(2)某居民某月用水量为8吨,求应付的水费是多少?

【答案】(1) 0≤x≤5时,y=x;(2) 9.5元.

【解析】

(1)当x≤5时,由图,已知两点,可根据待定系数法列方程,求函数关系式;

(2)当x≥5时,仍用待定系数法将此函数求出,然后将x=8代进去,将应付的水费求出.

(1)0≤x≤5时,设y=kx,由x=5时,y=5 5=5k,

k=1,0≤x≤5时,y=x

(2)x≥5时,设y=k1x+6,由图象可知

x≥5时,y=1.5x-2.5

x=8时,y=1.5×8—2.5=9.5()

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:
①∠1=∠2=22.5°;
②点C到EF的距离是 -1;
③△ECF的周长为2;
④BE+DF>EF.
其中正确的结论是 . (写出所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数的图象是第一、三象限的角平分线.

实验与探究:由图观察易知A(0,2)关于直线的对称点A′的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线的对称点B′C′的位置,并写出它们的坐标: B′____________C′___________

归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线的对称点的坐标为____________

运用与拓广:已知两点D(0,-3)、E(-1,-4),试在直线上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读,我们知道,在数轴上,x=1表示一个点,而在平面坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形,就是一次函数y=2x+1的图象,它也是一条直线,如图1,可以得出,直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为

在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧的部分,如图2;y≤2x+1,也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图3.

回答下列问题:

(1)在直角坐标系(如图4)中,用作图的方法求方程组的解;

(2)用阴影表示所围成的区域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)某校为了解学生体质情况,从各年级学生中随机抽取部分学生进行体能测试.
每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制 成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:


(1)填写统计表.
(2)根据调整后数据,补全条形统计图.
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6,则第12个点应取点B12,其坐标为(  )

A. (12,12) B. (78,78) C. (66,66) D. (55,55)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L:y=-x+2x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点MA点以每秒1个单位的速度沿x轴向左移动.

(1)求A、B两点的坐标;

(2)△COM的面积SM的移动时间t之间的函数关系式;

(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AEBD于E,CFBD于F,连结AF,CE.求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、DBFa于点F,DEa于点E,若DE=8,BF=5,则EF的长为__

查看答案和解析>>

同步练习册答案