【题目】如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
(1)直接写出点M的坐标为 ;
(2)求直线MN的函数解析式;
(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.
【答案】(1)(﹣2,0);(2)y=3x+6;(3)y=3x+3
【解析】
(1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,从而得出点M的坐标;
(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
(3)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.
(1)∵N(0,6),ON=3OM,∴OM=2,∴M(﹣2,0).
故答案为:(﹣2,0);
(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式,得:,解得:k=3,b=6,∴直线MN的函数解析式为:y=3x+6.
(1)把x=﹣1代入y=3x+6,得:y=3×(﹣1)+6=3,即点A(﹣1,3),所以点C(0,3),∴由平移后两直线的k相同可得:平移后的直线为y=3x+3.
科目:初中数学 来源: 题型:
【题目】在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )
A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°
C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图1菱形ABCD,∠ABC=60°,边长为 3,在菱形内作等边三角形△AEF,边长为2 ,点E,点F,分别在AB,AC上,以A为旋转中心将△AEF顺时针转动,旋转角为α,如图2
(1)在图2中证明BE=CF;
(2)若∠BAE=45°,求CF的长度;
(3)当CF= 时,直接写出旋转角α的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是( )
A.10 海里
B.10 海里
C.10 海里
D.20 海里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线OAB表示与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元;
(2)求、与x的函数表达式;
(3)在图中画出与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边AB的中点,将OA绕着点O逆时针旋转α(0°<α<180°)到OP.当△BCP为等腰三角形时,α的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )
A.一杯热水放在桌子上,它的水温与时间的关系
B.一辆汽车从起动到匀速行驶,速度与时间的关系
C.一架飞机从起飞到降落的速度与时晨的关系
D.踢出的足球的速度与时间的关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=a(x﹣3)2+ 过点C(0,4),顶点为M,与x轴交于A、B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:
①抛物线的对称轴是直线x=3;
②点C在⊙D外;
③在抛物线上存在一点E,能使四边形ADEC为平行四边形;
④直线CM与⊙D相切.
正确的结论是( )
A.①③
B.①④
C.①③④
D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com