精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,
求证:BD=OB.
证明:连接OC,
∵CD与圆0相切,
∴OC⊥CD,
∴∠OCD=90°,
∵OA=OC,
∴∠A=∠OCA=30°,
∵∠COD为△AOC的外角,
∴∠COD=60°,
∴∠D=30°,
∴OC=
1
2
OD,
∴OB=
1
2
OD,即B为OD的中点,
则OB=BD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交⊙O于点D.
(1)求证:BD是⊙O的切线;
(2)若AB=6,求线段DB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且ADOC.求证:AD•BC=OB•BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ABCD,⊙O为内切圆,E为切点,
(Ⅰ)求∠AOD的度数;
(Ⅱ)若AO=8cm,DO=6cm,求OE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针方向旋转60°到OD,则PD的长为(  )
A.
7
B.
31
2
C.
5
D.2
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于(  )
A.70°B.64°C.62°D.51°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,OA和OB是⊙O的半径,OB=2,OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的切线交OA延长线于点R.
(Ⅰ)求证:RP=RQ;
(Ⅱ)若OP=PQ,求PQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

⊙O是△ABC的外接圆,AB是直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若圆的半径为3,BD=2,DC=4,求AE和BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线PA、PB、MN分别与⊙O相切于点A、B、D,PA=PB=8cm,△PMN的周长是______.

查看答案和解析>>

同步练习册答案