分析 (1)当CE∥AB时,根据平行线的性质得∠ACE=∠A,∠DCE=∠B,由于∠A=∠B,则可得到∠ACE=∠DCE;
(2)当∠ACE=∠A时,根据平行线的判定得到AB∥CE,再根据平行线的性质得∠B=∠ECD,由于∠A=∠B,所以∠ACE=∠DCE.
解答 解:(1)可添加CE∥AB,使CE平分∠ACD.
理由如下:
∵CE∥AB,
∴∠ACE=∠A,∠DCE=∠B,
而∠A=∠B,
∴∠ACE=∠DCE,
即CE平分∠ACD;
(2)可添加∠ACE=∠A,使CE平分∠ACD.
理由如下:
∵∠ACE=∠A,
∴AB∥CE,
∴∠B=∠ECD,
而∠A=∠B,
∴∠ACE=∠DCE.
点评 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了平行线的判定.
科目:初中数学 来源: 题型:解答题
储水池 | 费用(万元/个) | 可供使用户数(户/个) | 占地面积(m2/个) |
新建 | 4 | 5 | 4 |
维护 | 3 | 18 | 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com