精英家教网 > 初中数学 > 题目详情

如图,在△ABO中,AD⊥OB于D,BC⊥OA于C,AD,BC交于点E,且OE平∠AOB,求证:△AEB是等腰三角形.

证明:∵AD⊥OB于D,BC⊥OA于C,AD,BC交于点E,且OE平∠AOB,
∴∠ACE=∠BDE=90°,CE=DE,
在△ACE和△BDE中,
∠ACE=∠BDE,CE=DE,∠AEC=∠BED,
∴△ACE≌△BDE,
∴AE=BE,
∴△AEB是等腰三角形.
分析:根据角平分线性质推出DE=CE,证△ACE≌△BDE,推出AE=BE即可.
点评:本题考查了角平分线性质、等腰三角形的判定和性质、全等三角形的判定和性质,关键是通过全等三角形推出AE=BE.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABO中,已知点A(
3
,3)
、B(-1,-1)、O(0,0),正比例函数y=-x图象精英家教网是直线l,直线AC∥x轴交直线l与点C.
(1)C点的坐标为
 

(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°≤α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.
①∠α=
 
;②画出△A′OB′.
(3)写出所有满足△DOC∽△AOB的点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABO中,已知A(0,4),B(-2,0),D为线段AB的中点.
(1)求点D的坐标;
(2)求经过点D的反比例函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•崇左)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E,与OB交于点F,连接CE,CF.
(1)求证:AB与⊙O相切.
(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆模拟)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.
(1)AB与⊙O相切吗,为什么?
(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABO中,AD⊥OB于D,BC⊥OA于C,AD,BC交于点E,且OE平∠AOB,求证:△AEB是等腰三角形.

查看答案和解析>>

同步练习册答案