精英家教网 > 初中数学 > 题目详情
3.设a,b为实数,求代数式a2+b2-a-2b+3的最小值.

分析 应用配方法将a2+b2-a-2b+3转化为(a-$\frac{1}{2}$)2+(b-1)2+$\frac{7}{4}$的形式,然后根据非负数的性质分析结果即可.

解答 解:∵a2+b2-a-2b+3
=a2-a+$\frac{1}{4}$+b2-2b+1-$\frac{1}{4}$+2
=(a-$\frac{1}{2}$)2+(b-1)2+$\frac{7}{4}$$≥\frac{7}{4}$
∴a2+b2-a-2b+3的最小值为$\frac{7}{4}$

点评 本题考查了配方法的应用,解题的关键是熟练掌握配方法的方法及非负数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.阅读下列材料:
1×2=$\frac{1}{3}$(1×2×3-0×1×2),
2×3=$\frac{1}{3}$(2×3×4-1×2×3),
3×4=$\frac{1}{3}$(3×4×5-2×3×4),
由以上三个等式相加,可得:1×2+2×3+3×4=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)=$\frac{1}{3}$(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4)=$\frac{1}{3}$×3×4×5=20.
根据以上材料,请你完成下列各题:
(1)1×2+2×3+3×4+…+10×11;(写出过程)
(2)1×2+2×3+3×4+…+n(n+1)=$\frac{1}{3}$n×(n+1)×(n+2);(用含n的代数式表示)
(3)根据以上学习经验,猜想1×2×3+2×3×4+…+18×19×20=35910.(写出最后结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.化简下列多项式:1+x+x(1+x)+x(1+x)2+x(1+x)3+…+x(1+x)2006

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知⊙O1与⊙O2的半径分别为3和5,O1O2=10.则两圆的两条内公切线与一条外公切线所围成的三角形面积为$\frac{45}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在Rt△ABC中,∠C=90°,∠B=30°,P为AB上的一点,$\frac{BP}{AP}$=$\frac{1}{2}$,PQ⊥BC于点Q,垂足为点Q,求cos∠AQC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.用一根长15cm的细铁丝围成一个三角形,其中,三边的长(单位:cm)分别为整数a、b、c,且a>b>c.
(1)请写出一组符合上述条件的a、b、c的值6,5,4;
(2)a最大可取7,c最小可取2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC中,AB=8,BC=10,以B为圆心,任意长为半径画弧分别交BA、BC于点M和N,再分别以M、N为圆心,大于$\frac{1}{2}$MN长为半径画弧,两弧交于点P,连结BP并延长交AC于点D,若△BDC的面积为20,则△ABD的面积为(  )
A.20B.18C.16D.12

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:$\frac{1}{3+\sqrt{3}}$+$\frac{1}{5\sqrt{3}+3\sqrt{5}}$+$\frac{1}{7\sqrt{3}+5\sqrt{7}}$+…+$\frac{1}{121\sqrt{119}+119\sqrt{121}}$=$\frac{5}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.2015年是怀柔区创建文明城区的全面启动之年,各学校组织开展了丰富多彩的未成年人思想道德教育实践活动.某校在雁栖湖畔举行徒步大会,大会徒步线路全长13千米.从雁栖湖国际会展中心北侧出发,沿着雁栖湖路向东,经过日出东方酒店、雁栖湖景区、古槐溪语公园、雁栖湖北岸环湖健身步道等,再返回雁栖湖国际会展中心.下图是小明和小军徒步时间t(小时)和行走的路程s(千米)之间的函数图象,请根据图象回答下列问题:
(1)试用文字说明,交点C所表示的实际意义;
(2)行走2小时时,谁处于领先地位?
(3)在哪段时间小军的速度大于小明的速度?说明理由.

查看答案和解析>>

同步练习册答案