【题目】小明到某超市购买A、B、C三种商品.其中A、B两种商品的单价之和正好等于C商品的单价,小明前两次购买商品的数量和总费用如下表:
商品A的数量 | 商品B的数量 | 商品C的数量 | 总费用(元) | |
第一次 | 2 | 3 | 2 | 230 |
第二次 | 1 | 4 | 3 | 290 |
(1)求A、B、C三种商品的单价;
(2)若小明第三次需要购置A、B、C三种商品共m个,其中C商品的数量是A商品的数量的2倍,恰好花了480元钱.
①求m的最大值;
②若小明在第三次购买A,B,C三种商品时正好遇上“买一送一”活动,即购买一个C商品即可赠送一个A商品或一个B商品(优先赠送A商品),求m的值.
【答案】(1)A、B、C三种商品的单价分别为20元,30元,50元;(2)①m的最大值为15;②m =18
【解析】
(1)设A、B、C三种商品的单价分别为x元,y元,(x+y)元,根据两次购买商品的费用建立方程组求解;
(2)①设第三次购置A商品a个,B商品b个,C商品2a个,则m=3a+b.根据总费用480元建立方程,可求m的最值;
②分两种情况讨论:当a≥b时,则购买C商品2a个即可,当a<b时,A不用购买,有赠送,B只要购买(b-a)个,列方程求解.
(1)设A、B、C三种商品的单价分别为x元,y元,(x+y)元,
则由题意得:,
得:,则有x+y=20+30=50,
答:A、B、C三种商品的单价分别为20元,30元,50元.
(2)设第三次购置A商品a个,B商品b个,C商品2a个,
则m=3a+b.
①20a+30b+50×2a=480,得:4a+b=16,
由a,b均为正整数,可以求得或或,
∴m的最大值为15.
②当a≥b时,则购买C商品2a个即可,50×2a=480(不合题意)
当a<b时,A不用购买,有赠送,B只要购买(b-a)个
∴30(b-a)+50×2a=480,
由a,b均为正整数,可以求得,则m=3a+b=18.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2 , 其中正确结论是(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是( )
A. BC=B′C′ B. ∠A=∠A′ C. AC=A′C′ D. ∠C=∠C′
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日销售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.
(1)求证:△ABD是等边三角形;
(2)求证:BE=AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点的坐标为,其中满足方程组.
(1)若点到轴的距离为6,则的值为_________;
(2)连接,线段沿轴方向向上平移到线段,则点到直线的距离为_______,线段扫过的面积为15,则点平移后对应点的纵坐标为_______;
(3)连接,,,若的面积小于等于12,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,长方形OABC的边OC、OA分别在x轴、y轴上,B点在第一象限,点A的坐标是(0,4),OC=8.
(1)直接写出点B、C的坐标;
(2)点P从原点O出发,在边OC上以每秒1个单位长度的速度匀速向C点移动,同时点Q从点B出发,在边BA上以每秒2个单位长度的速度匀速向A点移动,当一个点到达终点时,另一个点随之停止移动,设移动的时间为t秒钟,探究下列问题:
① 当t值为多少时,直线PQ∥y轴?
② 在整个运动过程中,能否使得四边形BCPQ的面积是长方形OABC的面积的?若能,请直接写出P、Q两点的坐标;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们用[a]表示不大于a的最大整数,例如:[3.5]=3,[4]=4,[-1.5]=-2;用{a}表示大于a的最小整数,例如:{3.5}=4,{1}=2,{-2.5}=-2.解决下列问题:
(1)[-5.5]等于多少,{2.5}等于多少;
(2)若[x]=3,写出x的取值范围;若{y}=-2,写出y的取值范围.
(3)已知x,y满足方程组,求x,y的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com