精英家教网 > 初中数学 > 题目详情
已知两个全等的直角三角形纸片ABC、DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,AC=DF=4,BC=EF=7.若纸片DEF不动.
(1)在图1中,连接AE,求直角梯形ACFE中的AE长及∠FED的度数(结果精确到0.1°);
(2)直接写出当△ABC绕点F逆时针旋转最小多少度时,直角边AC与斜边DE精英家教网平行(如图2).
分析:(1)过点A作EF的垂线,垂足为H.由题意可得四边形ACFH是矩形.则求得AH,EH.再在直角三角形AEH中,由勾股定理得AE,再在直角三角形EFD中,由三角函tan∠FEB=
FD
EF
=
4
7
,得出∠FED;
(2)直接得出结论:当△ABC绕点F逆时针旋转最小29.7°时,直角边AC与斜边DE平行.
解答:解:(1)过点A作EF的垂线,垂足为H,连接AE.精英家教网
依题意可得四边形ACFH是矩形.
∴AH=CF=BC-BF=3,
EH=EF-AC=3.
在直角三角形AEH中
AE=
32+32
=3
2

在直角三角形EFD中tan∠FEB=
FD
EF
=
4
7

∴∠FED≈29.7°;

(2)当△ABC绕点F逆时针旋转最小29.7°时,直角边AC与斜边DE平行.
点评:本题考查了旋转的性质,勾股定理、解直角三角形等知识点,难度不大,要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=a精英家教网x2-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=ax2-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2013届四川德阳市中江县柏树中学九年级下学期第一次月考试数学试卷(带解析) 题型:解答题

如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省宁波市江东区初三学业水平抽测数学试卷(解析版) 题型:解答题

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=ax2-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.

查看答案和解析>>

同步练习册答案