分析 先化简题目中的式子,然后对x2-4x-2013=0变形代入化简后的式子即可解答本题.
解答 解:($\frac{x+2}{{x}^{2}-2x}$-$\frac{x-1}{{x}^{2}-4x+4}$)÷$\frac{x-4}{x}$
=$[\frac{x+2}{x(x-2)}-\frac{x-1}{(x-2)^{2}}]•\frac{x}{x-4}$
=$\frac{(x+2)(x-2)-x(x-1)}{x(x-2)^{2}}•\frac{x}{x-4}$
=$\frac{x-4}{x(x-2)^{2}}•\frac{x}{x-4}$
=$\frac{1}{(x-2)^{2}}$
=$\frac{1}{{x}^{2}-4x+4}$,
∵x2-4x-2013=0,
∴x2-4x=2013,
∴原式=$\frac{1}{{x}^{2}-4x+4}$=$\frac{1}{2013+4}=\frac{1}{2017}$.
点评 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
分 数 | 人 数 |
5分 | 5人 |
6分 | 2人 |
7分 | 3人 |
8分 | 1人 |
9分 | 4人 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com