精英家教网 > 初中数学 > 题目详情
16.下列计算正确的是(  )
A.3x2-x2=3B.3a2+2a3=5a5C.5x3-x3=4x3D.-0.5ab+$\frac{1}{4}$ba=0

分析 依据合并同类项法则进行判断即可.

解答 解:A、3x2-x2=2x2,故A错误;
B、3a2与2a3不是同类项,不能合并,故B错误;
C、5x3-x3=4x3,故C正确;
D、-0.5ab+$\frac{1}{4}$ba=$\frac{1}{4}$ba,故D错误.
故选:C.

点评 本题主要考查的是合并同类项,掌握同类项的定义以及合并同类项法则是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,AD是△ABC的BC边上的中线,DE∥AB,若AB=5,则DE的长为2.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.【背景介绍】勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.
【小试牛刀】把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:S梯形ABCD=$\frac{1}{2}$a(a+b),S△EBC=$\frac{1}{2}$b(a-b),S四边形AECD=$\frac{1}{2}$c2,则它们满足的关系式为$\frac{1}{2}$a(a+b)=$\frac{1}{2}$b(a-b)+$\frac{1}{2}$c2,经化简,可得到勾股定理.
【知识运用】(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=24千米,BC=16千米,则两个村庄的距离为8$\sqrt{26}$千米(直接填空).
(2)在(1)的背景下,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.
【知识迁移】借助上面的思考过程与几何模型,求代数式$\sqrt{{x}^{2}+9}$+$\sqrt{(16-x)^{2}+81}$的最小值(0<x<16).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.等腰Rt△ABC中,BA=BC,∠ABC=90°,将△ABD绕点B顺时针旋转90°后,得到△CBE.若AB=6,CD=2AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先观察下列等式,再完成题后问题:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256…
(1)通过观察发现2n的个位数字是由4种数字组成;
(2)用你所发现的规律写出22016的个位数字是6;
(3)探究:32017的个位数字是3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB、B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1、C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,经过2016次操作后△A2016B2016C2016的面积为72016

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知直角三角形的两直角边的长分别为5和12,则斜边中线长为$\frac{13}{2}$,高线长为$\frac{60}{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知AB为⊙O的弦长,且AB:AO=$\sqrt{3}$,点C为$\widehat{AB}$的中点,试猜想四边形AOBC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知海岛A的周围6km的范围内有暗礁,一艘海轮在B处测得海岛A在北偏东30°的方向;向正北方向航行6km到达C处,又测得该岛在北偏东60°的方向,如果海轮不改变航向,继续向正北航行,有没有触礁的危险?

查看答案和解析>>

同步练习册答案