精英家教网 > 初中数学 > 题目详情

在△ABC中,AC=BC,

(1)如图①,如果CD为底边AB上的中线,∠BCD=20°,CD=CE,则∠ADE=______°
(2)如图②,如果CD为底边AB上的中线,∠BCD=30°,CD=CE,则∠ADE=______°
(3)思考:通过以上两题,你发现∠BCD与∠ADE之间有什么关系?请用式子表示:______
(4)如图③,CD不是AB上的中线,CD=CE,是否依然有上述关系?如果有,请写出来,并说明理由.

解:(1)∵AC=BC,CD为底边AB上的中线,
∴∠ECD=∠BCD=20°,CD⊥AB,
∴∠A=90°-∠ECD=70°.
又∵CD=CE,
∴∠CED==80°,
∴∠ADE=∠CED-∠A=80°-70°=10°;

(2)∵AC=BC,CD为底边AB上的中线,
∴∠ECD=∠BCD=30°,CD⊥AB,
∴∠A=90°-∠ECD=60°.
又∵CD=CE,
∴∠CED==75°,
∴∠ADE=∠CED-∠A=75°-60°=15°;

(3)∵∠BCD=20°时,∠ADE=10°;
∠BCD=30°时,∠ADE=15°;
∴∠BCD=2∠ADE.

(4)依然有∠BCD=2∠ADE.理由如下:
∵AC=BC,∴∠A=∠B.
∵∠BCD+∠B=∠ADE+∠CDE,
∴∠BCD+∠A=∠ADE+∠CDE.
∵CD=CE,∴∠CED=∠CDE,
∴∠BCD+∠A=∠ADE+∠CED,
∵∠CED=∠A+∠ADE,
∴∠BCD+∠A=∠ADE+∠A+∠ADE,
∴∠BCD=2∠ADE.
分析:(1)先根据等腰三角形三线合一的性质得出∠ECD=∠BCD=20°,根据等腰三角形等边对等角的性质及三角形内角和定理求出∠A=70°,∠CED=80°,再由三角形的一个外角等于和它不相邻的两个内角的和,得出∠ADE=∠CED-∠A;
(2)同(1),先根据等腰三角形三线合一的性质得出∠ECD=∠BCD=30°,根据等腰三角形等边对等角的性质及三角形内角和定理求出∠A=60°,∠CED=75°,再由三角形的一个外角等于和它不相邻的两个内角的和,即可得出∠ADE=∠CED-∠A;
(3)由(1)(2)中∠BCD与∠ADE的度数关系,容易发现∠BCD=2∠ADE;
(4)根据等腰三角形等边对等角的性质,三角形的外角性质及等式的性质即可证明∠BCD=2∠ADE依然成立.
点评:本题主要考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,综合性较强,难度中等.本题四问,循序渐进,体现了由特殊到一般的规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案