精英家教网 > 初中数学 > 题目详情
方程ax2+bx+c=0(a≠0)有两实数根x1,x2,则(  )
A、
x1+x2=
b
a
x1x2=
c
a
B、
x1+x2=-
b
a
x1x2=-
c
a
C、
x1+x2=
b
a
x1x2=-
c
a
D、
x1+x2=-
b
a
x1x2=
c
a
分析:可根据根与系数的关系直接判断,得出结果.
解答:解:根据根与系数的关系:
可得
x1+x2=-
b
a
x1x2=
c
a

故选D.
点评:此题主要考查了根与系数的关系,应熟悉根与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c-8=0的根的情况是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网己知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+c与x轴的交点个数是由
△=b2-4ac
△=b2-4ac
决定的:当
△=b2-4ac>0
△=b2-4ac>0
时,抛物线与x轴有两个交点,交点横坐标是方程
ax2+bx+c=0
ax2+bx+c=0
的两根;当
(-△=b2-4ac=0
(-△=b2-4ac=0
时,抛物线与x轴有一个交点,交点坐标是
(-
b
2a
,0)
(-
b
2a
,0)
;当
△=b2-4ac<0时
△=b2-4ac<0时
时,抛物线与x轴没有交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)解方程:(2x-3)2-6(2x-3)+5=0.
(2)已知a、b、c均为实数且
a2-2a+1
+|b+1|+(c+3)2=0
,求方程ax2+bx+c=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=ax2+bx+c的图象如图所示,试根据图象回答下列问题:
(1)求出函数的解析式;
(2)写出抛物线的对称轴方程和顶点坐标?
(3)当x取何值时y随x的增大而减小?
(4)方程ax2+bx+c=0的解是什么?
(5)不等式ax2+bx+c>0的解集是什么?

查看答案和解析>>

同步练习册答案