9£®ÒÑÖª£ºÈçͼƽÃæÖ±½Ç×ø±êϵxOyÖУ¬CÔÚxÖáÉÏ£¬ËıßÐÎOABCΪÁâÐΣ¬ÇÒAµã×ø±ê
Ϊ£¨-3£¬4£©£¬¹ýA¡¢CµÄÖ±Ïß½»yÖáÓÚµãM£¬Á¬½ÓBM
£¨1£©ÇóÖ±ÏßACµÄ½âÎöʽ
£¨2£©Ò»¶¯µãP´ÓA³ö·¢£¬ÒÔÿÃë2¸öµ¥Î»³¤¶ÈÑØA¡úB¡úCÏòCµãÔ˶¯£¬ÉèÔ˶¯¹ý³ÌÖС÷PBMµÄÃæ»ýΪS£¬Ô˶¯Ê±¼äΪt£¨Ã룩£¬ÊÔÇó³öS¹ØÓÚtµÄº¯Êý¹Øϵʽ£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÊÔÇó³öµ±tΪºÎֵʱ£¬¡÷PBMµÄÃæ»ýµÄ×î´óÖµ£¿×î´óÖµÊǶàÉÙ£¿

·ÖÎö £¨1£©¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃAOµÄ³¤£¬¸ù¾ÝÁâÐεÄÐÔÖÊ£¬¿ÉµÃOCµÄ³¤£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©·ÖÀàÌÖÂÛ£º¢Ùµ±0¡Üt$£¼\frac{5}{2}$ʱ£¬¸ù¾ÝÏ߶εĺͲ¿ÉµÃDM¡¢BMµÄ³¤£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£»µ±0¡Üt$£¼\frac{5}{2}$ʱ£¬¸ù¾ÝÃæ»ýµÄºÍ²î£¬¿ÉµÃMEµÄ³¤£¬¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝÒ»´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃº¯ÊýµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©Èçͼ1£¬×÷AD¡ÍxÖáÓÚDµã£®
£¬
Óɹ´¹É¶¨Àí£¬µÃ
AO=$\sqrt{A{D}^{2}+O{D}^{2}}$=$\sqrt{£¨-3£©^{2}+{4}^{2}}$=5£¬
ÓÉÁâÐεĶ¨Ò壬µÃOC=AO=AB=5£¬
C£¨5£¬0£©£®
ÉèACµÄ½âÎöʽΪy=kx+b£¬Í¼Ïó¹ýA¡¢Cµã£¬
$\left\{\begin{array}{l}{5k+b=0}\\{-3k+b=4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=\frac{5}{2}}\end{array}\right.$£¬
Ö±ÏßACµÄ½âÎöʽy=-$\frac{1}{2}$x+$\frac{5}{2}$£»
£¨2£©¢Ùµ±0¡Üt$£¼\frac{5}{2}$ʱ£¬Èçͼ2£º
£¬
ACÓëyÖáµÄ½»µã×ø±ê£¨0£¬$\frac{5}{2}$£©£¬
MD=OD-OM=4-$\frac{5}{2}$=$\frac{3}{2}$£®
AP=2t£¬PB=5-2t£®
S=$\frac{1}{2}$PB•MD£¬¼´S=$\frac{1}{2}$¡Á$\frac{3}{2}$¡Á£¨5-2t£©£¬
»¯¼ò£¬µÃS=$\frac{15}{4}$-$\frac{3}{2}$t£»
¢Úµ±$\frac{5}{2}$£¼t¡Ü5ʱ£¬×÷ME¡ÍBCÓÚEµã£¬Èçͼ3£º
£¬
S¡÷ABC=$\frac{1}{2}$SAOCB=$\frac{1}{2}$OC•OD=10£®
S¡÷ABC=S¡÷ABM+S¡÷BCM=$\frac{1}{2}$¡Á5¡Á$\frac{3}{2}$+$\frac{1}{2}$¡Á5ME=10£®
½âµÃME=$\frac{5}{2}$£®
S=$\frac{1}{2}$PB•ME£¬¼°S=$\frac{1}{2}$¡Á$\frac{5}{2}$£¨2t-5£©£¬
»¯¼ò£¬µÃS=$\frac{5}{2}$t-$\frac{25}{4}$£¬
×ÛÉÏËùÊö£ºS=$\left\{\begin{array}{l}{-\frac{3}{2}t+\frac{15}{4}£¨0¡Üt£¼\frac{5}{2}£©}\\{\frac{5}{2}t-\frac{25}{4}£¨\frac{5}{2}£¼t¡Ü5£©}\end{array}\right.$£»
£¨3£©¢Ùµ±0¡Üt£¼$\frac{5}{2}$ʱ£¬SËætµÄÔö´ó¶ø¼õС£¬µ±t=0ʱ£¬S×î´ó=$\frac{15}{4}$£¬
¢Úµ±$\frac{5}{2}$£¼t¡Ü5ʱ£¬sËætµÄÔö´ó¶øÔö´ó£¬µ±t=5ʱ£¬S×î´ó=$\frac{25}{4}$£¬
×ÛÉÏËùÊö£ºµ±t=5ʱ£¬S×î´ó=$\frac{25}{4}$£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃÁâÐεÄÐÔÖʵóöOCµÄ³¤£¬ÓÖÀûÓôý¶¨ÏµÊý·¨µÃ³öº¯Êý½âÎöʽ£»£¨2£©ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½µÃ³öº¯Êý½âÎöʽ£¬·ÖÀàÌÖÂÛÊǽâÌâ¹Ø¼ü£»£¨3£©ÀûÓú¯ÊýµÄÔö¼õÐÔÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªPΪÕý·½ÐÎABCDµÄ¶Ô½ÇÏßACÉÏÈÎÒâÒ»µã£¬ÇóÖ¤£ºPB=PD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®a£¬b£¬cΪÈý½ÇÐÎÈýÌõ±ß£¬ÇÒÂú×ãab-b2+ac-bc=0£¬ÅжÏÈý½ÇÐÎÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AB=10£¬ÒÔµãCΪԲÐÄ£¬CAΪ°ë¾¶µÄÔ²ÓëAB½»ÓÚµãD£¬$sinB=\frac{3}{5}$£®
£¨1£©Çó¡ÑCµÄ°ë¾¶r£»
£¨2£©ÇóÏÒADµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AB=AC£¬×÷¡ÏACM£¬Ê¹µÃ¡ÏACM=$\frac{1}{2}$¡ÏABC£¬µãDÊÇÖ±ÏßBCÉϵĶ¯µã£¬¹ýµãD×÷Ö±ÏßCMµÄ´¹Ïߣ¬´¹×ãΪE£¬½»Ö±ÏßACÓÚF£®
£¨1£©µ±µãDÓëµãBÖغÏʱ£¬Èçͼ1Ëùʾ£¬DFÓëECµÄÊýÁ¿¹ØϵÊÇDF=2EC£»
£¨2£©µ±µãDÔÚÖ±ÏßBCÉÏÔ˶¯Ê±£¬DFºÍECÊÇ·ñʼÖÕ±£³ÖÉÏÊöÊýÁ¿¹ØϵÄØ£¿ÇëÄã»­³öµãDÔ˶¯µ½CBÑÓ³¤ÏßÉÏijһµãʱµÄͼÐΣ¬²¢Ö¤Ã÷´ËʱDFÓëECµÄÊýÁ¿¹Øϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬µãC£¬B£¬EÔÚͬһÌõÖ±ÏßÉÏ£¬AC¡ÍBC£¬BD¡ÍDE£¬AC=BD=6£¬AB=10£¬¡ÏA=¡ÏDBE
£¨1£©ÇóÖ¤£ºAB¡ÎDE£»
£¨2£©ÇóCEµÄ³¤£»
£¨3£©Çó¡÷DBCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬¡÷ACBºÍ¡÷ADE¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏBAC=¡ÏDAE=90¡ã£¬µãC¡¢D¡¢EÈýµãÔÚͬһֱÏßÉÏ£¬Á¬½áBD£¬Ôò¡ÏBDE=90¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑ֪Բ׶µÄ¸ßÊÇ3cm£¬Ä¸Ïß³¤5cm£¬ÔòԲ׶µÄ²àÃæ»ýÊÇ20¦Ðcm2£®£¨½á¹û±£Áô¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³Ð£È«ÌåѧÉú»ý¼«²Î¼ÓУÍÅί×éÖ¯µÄ¡°Ï×°®Ðľè¿î¡±»î¶¯£¬ÎªÁ˽â¾è¿îÇé¿ö£¬Ëæ»ú³éÈ¡Á˲¿·ÖѧÉú²¢¶ÔËûÃǵľè¿îÇé¿ö×÷ÁËͳ¼Æ£¬»æÖÆÁËÁ½·ù²»ÍêÕûµÄͳ¼Æͼ£¨Í³¼ÆͼÖÐÿ×麬×îСֵ£¬²»º¬×î´óÖµ£©£®
ÇëÒÀ¾ÝͼÖÐÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺

£¨1£©ÇóËæ»ú³éÈ¡µÄѧÉúÈËÊý£®
£¨2£©Ìî¿Õ£º£¨Ö±½ÓÌî´ð°¸£©
¢Ù¡°20Ôª¡«25Ôª¡±²¿·Ö¶ÔÓ¦µÄÔ²ÐĽǶÈÊýΪ72¡ã£®
¢Ú¾è¿îµÄÖÐλÊýÂäÔÚ15Ôª¡«20Ôª£¨Ìî½ð¶î·¶Î§£©£®
£¨3£©Èô¸ÃУ¹²ÓÐѧÉú3500ÈË£¬Çë¹ÀËãȫУ¾è¿î²»ÉÙÓÚ20ÔªµÄÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸