分析 根据∠DCB=90°,∠FCE=90°,首先证明∠DCF=∠BCE,然后根据正方形的性质即可证明△CDF≌△CBE,从而得CF=CE,由正方形的面积求出正方形边长BC,然后根据等腰Rt△CFE的面积求出CE的长度,根据勾股定理即可求得BE的长度.
解答 解:∵四边形ABCD是正方形,
∴CD=CB,∠D=∠DCB=∠CBA=90°,
又∵∠FCE=90°,
∴∠FCB+∠FCD=90°,
∴∠DCF=∠BCE(同角的余角相等),
∵在△CDF和△CBE中,
$\left\{\begin{array}{l}{∠D=∠CBE}\\{CD=CB}\\{∠DCF=∠BCE}\end{array}\right.$,
∴△CDF≌△CBE(ASA),
∴CF=CE,
∴△CEF是等腰直角三角形,
∵正方形ABCD的面积为256,
∴CB=16,
∴S△CEF=$\frac{1}{2}$CF×CE=200,
解得:CE=20,
在Rt△CBE中,BE=$\sqrt{2{0}^{2}-1{6}^{2}}$=12.
故答案为:12.
点评 本题考查了正方形的性质,涉及了全等三角形的判定及性质、勾股定理的应用等知识,难度一般,解答本题的关键是通过正方形的性质证明全等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{8}{3}$≤y≤$\frac{64}{11}$ | B. | $\frac{64}{11}$≤x≤8 | C. | $\frac{8}{3}$≤y≤8 | D. | 8≤x≤16 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com