精英家教网 > 初中数学 > 题目详情
(2012•海南)如图,∠APB=30°,圆心在PB上的⊙O的半径为1cm,OP=3cm,若⊙O沿BP方向平移,当⊙O与PA相切时,圆心O平移的距离为
1或5
1或5
cm.
分析:首先根据题意画出图形,然后由切线的性质,可得∠O′CP=90°,又由∠APB=30°,O′C=1cm,即可求得O′P的长,继而求得答案.
解答:解:如图1,当⊙O平移到⊙O′位置时,⊙O与PA相切时,且切点为C,
连接O′C,则O′C⊥PA,
即∠O′CP=90°,
∵∠APB=30°,O′C=1cm,
∴O′P=2O′C=2cm,
∵OP=3cm,
∴OO′=OP-O′P=1(cm).
如图2:同理可得:O′P=2cm,
∴O′O=5cm.
故答案为:1或5.
点评:此题考查了切线的性质与含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•海南)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是
9
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海南)如图,正比例函数y=k1x与反比例函数y=
k2
x
的图象相交于A、B两点,若点A的坐标为(2,1),则点B的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海南)如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧
AmB
上的一点,则tan∠APB的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海南)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,
(1)求证:△ADN≌△CBM;
(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;
(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.

查看答案和解析>>

同步练习册答案