精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
x….-10124
y….0-3-435….
(1)求该二次函数的关系式;
(2)若A(-4,y1),B(
11
2
,y2)两点都在该函数的图象上,试比较y1与y2的大小;
(3)若A(m-1,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.
(1)把(-1,0)、(0,-3)、(1,-4)代入函数解析式y=ax2+bx+c中,可得
a-b+c=0
c=-3
a+b+c=-4

解得
a=1
b=-2
c=-3

那么二次函数的解析式是y=x2-2x-3;

(2)把x=-4代入函数,可得y1=21,再把x=
11
2
代入函数,可得y2=
65
4

∴y1>y2
(3)把x=m-1代入函数解析式可得y1=m2-4m,
再把x=m+1代入函数可得y2=m2-4,
y1-y2=-4m+4>0即m<1时,y1>y2
当m>1时,y1<y2
当m=1时,y1=y2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程x2-5x+4=0的两个根,且抛物线的对称轴是直线x=1.
(1)求A、B、C三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DEBC交AC于点E,连接CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,抛物线经过点A(12,0)、B(-4,0)、C(0,-12).顶点为M,过点A的直线y=kx-4交y轴于点N.
(1)求该抛物线的函数关系式和对称轴;
(2)试判断△AMN的形状,并说明理由;
(3)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E(如图②).当直线l平移时(包括l与直线AN重合),在抛物线对称轴上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,己知抛物线y=x2+px+q与x轴交于A、B两点,∠ACB=90°,交y轴负半轴于C点,点B在点A的右侧,且
1
OA
-
1
OB
=
2
OC

(1)求抛物线的解析式,
(2)求△ABC的外接圆面积;
(3)设抛物线y=x2+px+q的顶点为D,求四边形ACDB的面积;
(4)在抛物线y=x2+px+q上是否存在点P,使得△PAB的面积为2
2
?如果有,这样的点有几个?写出它们的坐标;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
b
2a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的解析式;
(2)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某瓜果基地市场部为指导某地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息.如图甲、乙两图.
注:两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低;图甲的图象是线段,图乙的图象是抛物线.
(1)在3月份出售这种蔬菜,每千克的收益(收益=售价-成本)是多少元
(2)设x月份出售这种蔬菜,每千克收益为y元,求y关于x的函数解析式;
(3)问哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=-2,则m的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是抛物线y2=x2-6x+9对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=______.

查看答案和解析>>

同步练习册答案