精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,若tanA=
3
4
,则sinA等于(  )
分析:据三角函数的定义,tanA=
a
b
=
3
4
,因而可以设a=3,b=4根据勾股定理可以求得c的长,然后利用正弦的定义即可求解.
解答:解:∵tanA=
a
b
=
3
4

∴设a=3,b=4,
∴由勾股定理得到c=5,
∴sinA=
a
c
=
3
5

故选D.
点评:本题考查了三角函数的定义,正确理解三角函数可以转化成直角三角形的边的比值,是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案