【题目】某景区的门票销售分两类:一类为散客门票,价格为元/张;另一类为团体门票(一次性购买门票张以上),每张门票价格在散客门票价格的基础上打折,某班部分同学要去该景点旅游,设参加旅游人,购买门票需要元
(1)如果每人分别买票,求与之间的函数关系式:
(2)如果购买团体票,求与之间的函数关系式,并写出自变量的取值范围;
(3)请根据人数变化设计一种比较省钱的购票方式.
【答案】(1);(2)y=32x(x10);(3)8人以下买散客票; 8人以上买团体票;恰好8人时,即可按10人买团体票,可买散客票.
【解析】
(1)买散客门票价格为40元/张,利用票价乘人数即可,即y=40x;
(2)买团体票,需要一次购买门票10张及以上,即x≥10,利用打折后的票价乘人数即可;
(3)根据(1)(2)分情况探讨得出答案即可.
(1)散客门票:y=40x;
(2)团体票:y=40×0.8x=32x(x10);
(3)因为40×8=32×10,
所以当人数为8人,x=8时,两种购票方案相同;
当人数少于8人,x<8时,按散客门票购票比较省钱;
当人数多于8人,x>8时,按团体票购票比较省钱.
科目:初中数学 来源: 题型:
【题目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= ∠CED=α.
(1)如图1,将AD、EB延长,延长线相交于点0.
①求证:BE= AD;
②用含α的式子表示∠AOB的度数(直接写出结果);
(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N.求证:N是BD的中点.
注:第(2)问的解答过程无需注明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文化十大精深,源远流长,我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子短一托。”其大意 为:现有一根竿和一要绳索,折回索子来量竿,却比竿尺;如果将绳索对半折后再去量竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果绳索对半折后再去量竿,就比竿短5尺.设绳索长尺,竿长尺,则符合题意的方程组是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,-2)、B(4,-1)、C(3,-3).
(1)画出将△ABC向左平移5个单位,再向上平移3个单位后的△A1B1C1,并写出点B的对应点B1的坐标____________;
(2)以原点O为位似中心,在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的相似比为2:1,并写出点B1的对应点B2的坐标____________;
(3)若△A1B1C1内部任意一点P1 的坐标为(a-5,b+3),直接写出经过(2)的变化后点P1的对应点P2的坐标(用含a、b的代数式表示).P2的坐标是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求D点坐标;
(2)求二次函数的解析式;
(3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=kx+4m(m>0)的图象经过点B(p,2m),其中m>0.
(1)若m=1,且k=﹣1,求点B的坐标;
(2)已知点A(m,0),若直线y=kx+4m与x轴交于点C(n,0),n+2p=4m,试判断线段AB上是否存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com