精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.
(1)求证:FD2=FB•FC;
(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.
分析:(1)要求证:FD2=FB•FC,只要证明△FBD∽△FDC,从而转化为证明∠FDC=∠FBD;
(2)要证DG⊥EF,只要证明∠5+∠1=90°,转化为证明∴∠3=∠4即可.
解答:(1)证明:∵E是Rt△ACD斜边中点,
∴DE=EA,
∴∠A=∠2,(1分)
∵∠1=∠2,
∴∠1=∠A,(2分)
∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A,
∴∠FDC=∠FBD,
∵∠F是公共角,
∴△FBD∽△FDC.(4分)
FB
FD
=
FD
FC

∴FD2=FB•FC.(6分)

(2)GD⊥EF.(7分)
理由如下:
∵DG是Rt△CDB斜边上的中线,
∴DG=GC.
∴∠3=∠4.
由(1)得∵△FBD∽△FDC,
∴∠4=∠1,
∴∠3=∠1.(9分)
∵∠3+∠5=90°,
∴∠5+∠1=90°.
∴DG⊥EF.(10分)
点评:证明线段的积相等可以转化为证明三角形相似,证明两直线垂直转化为证明形成的角是直角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,△ABC是直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′2的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面短文:
如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)精英家教网精英家教网
解答问题:
(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1
 
S2(填“>”“=”或“<”).
(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画
 
个,利用图③把它画出来.
(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出
 
个,利用图④把它画出来.
(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是直角三角形,∠ACB=90°.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)精英家教网
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点E,连接AE,
(2)综合与运用:在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是
 

②线段AE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是直角边长为4的等腰直角三角形,直角边AB是半圆O1的直径,半圆O2过C点且与半圆O1相切,则图中阴影部分的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是直角三角形,∠BAC=90°,AD、AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm.
(1)求AD的长;
(2)求△AEC的面积.

查看答案和解析>>

同步练习册答案