精英家教网 > 初中数学 > 题目详情
(2009•眉山)如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

【答案】分析:(1)易得点A(0,1),那么把A,B坐标代入y=x2+bx+c即可求得函数解析式;
(2)让直线解析式与抛物线的解析式结合即可求得点E的坐标.△PAE是直角三角形,应分点P为直角顶点,点A是直角顶点,点E是直角顶点三种情况探讨;
(3)易得|AM-MC|的值最大,应找到C关于对称轴的对称点B,连接AB交对称轴的一点就是M.应让过AB的直线解析式和对称轴的解析式联立即可求得点M坐标.
解答:解:(1)将A(0,1)、B(1,0)坐标代入y=x2+bx+c

解得
∴抛物线的解折式为y=x2-x+1;(2分)

(2)设点E的横坐标为m,则它的纵坐标为m2-m+1,
即E点的坐标(m,m2-m+1),
又∵点E在直线y=x+1上,
m2-m+1=m+1
解得m1=0(舍去),m2=4,
∴E的坐标为(4,3).(4分)
(Ⅰ)当A为直角顶点时,
过A作AP1⊥DE交x轴于P1点,设P1(a,0)易知D点坐标为(-2,0),
由Rt△AOD∽Rt△P1OA得

∴a=
∴P1,0).(5分)
(Ⅱ)同理,当E为直角顶点时,过E作EP2⊥DE交x轴于P2点,
由Rt△AOD∽Rt△P2ED得,
=
∴EP2=
∴DP2==
∴a=-2=
P2点坐标为(,0).(6分)
(Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(b、0),
由∠OPA+∠FPE=90°,得∠OPA=∠FEP,Rt△AOP∽Rt△PFE,

解得b1=3,b2=1,
∴此时的点P3的坐标为(1,0)或(3,0),(8分)
综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0);

(3)抛物线的对称轴为,(9分)
∵B、C关于x=对称,
∴MC=MB,
要使|AM-MC|最大,即是使|AM-MB|最大,
由三角形两边之差小于第三边得,当A、B、M在同一直线上时|AM-MB|的值最大.(10分)
易知直线AB的解折式为y=-x+1
∴由

∴M(,-).(11分)
点评:一个三角形是直角三角形,应分不同顶点为直角等多种情况进行分析;
求两条线段和或差的最值,都要考虑做其中一点关于所求的点在的直线的对称点.
练习册系列答案
相关习题

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(42)(解析版) 题型:解答题

(2009•眉山)如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年3月浙江省杭州市九年级月考数学试卷(解析版) 题型:选择题

(2009•眉山)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )

A.
B.5
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练7:反比例函数(解析版) 题型:选择题

(2009•眉山)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )

A.
B.5
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年安徽省芜湖市中考数学模拟试卷(一)(解析版) 题型:解答题

(2009•眉山)如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

查看答案和解析>>

同步练习册答案