精英家教网 > 初中数学 > 题目详情
3.有黑白两种小球若干只,且同色小球的质量均相同,在如图所示的两次称量中天平均恰好平衡,若每只砝码的质量均为5克,则每只黑球和白球的质量各是多少克?

分析 设每只黑球的质量为x克,每只白球的质量为y克,根据“1只黑球、2只白球的总质量为5克,3只黑球、1只白球的总质量为10克”即可得出关于x、y的二元一次方程组,解之即可得出结论.

解答 解:设每只黑球的质量为x克,每只白球的质量为y克,
根据题意得:$\left\{\begin{array}{l}{x+2y=5}\\{3x+y=10}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$.
答:每只黑球的质量为3克,每只白球的质量为1克.

点评 本题考查了二元一次方程组的应用,根据天平两边的质量相当列出关于x、y的二元一次方程组是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.定义:如图1,等腰△ABC中,点E,F分别在腰AB,AC上,连结EF,若AE=CF,则称EF为该等腰三角形的逆等线.

(1)如图1,EF是等腰△ABC的逆等线,若EF⊥AB,AB=AC=5,AE=2,求逆等线EF的长;
(2)如图2,若等腰直角△DEF的直角顶点D恰好为等腰直角△ABC底边BC上的中点,且点E,F分别在AB,AC上,求证:EF为等腰△ABC的逆等线;
(3)如图3,等腰△AOB的顶点O与原点重合,底边OB在x轴上,反比例函数y=$\frac{k}{x}$(x>0)的图象交△OAB于点C,D,若CD恰为△AOB的逆等线,过点C,D分别作CE⊥x轴,DF⊥x轴,已知OE=2,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.因式分解:
(1)2(x2+y22-8x2y2                 
(2)6x2-5x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知BC⊥AC于点C,FG⊥AB于点G,∠2+∠4=90°,请说明CD⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知∠1=∠2,∠A=∠F,试判断∠C与∠D的大小关系,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知|2017-a|+$\sqrt{a-2018}$=a,则a-20172的值为(  )
A.2017B.2018C.20172D.20182

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.明明家离学校1500米,其中有一段为上坡路.另一段为下坡路,某天他去学校共用了12分钟,假设明明上坡路的平均速度是5千米/时,下坡路的平均速度是8千米/时.若设明明上坡路用了x分钟,下坡路用了y分钟,根据题意可列方程组为(  )
A.$\left\{\begin{array}{l}{x+y=12}\\{5x+8y=1500}\end{array}\right.$B.$\left\{\begin{array}{l}{x+y=12}\\{\frac{1}{12}x+\frac{2}{15}y=1.5}\end{array}\right.$
C.$\left\{\begin{array}{l}{5x+8y=1.5}\\{x+y=12}\end{array}\right.$D.$\left\{\begin{array}{l}{x+y=12}\\{\frac{1}{12}x-\frac{2}{15}y=1.5}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在扇形OAB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,若正方形CDEF的边长为2,则图中阴影部分的面积为(  )
A.π-2B.2π-2C.4π-4D.4π-8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,平面直角坐标系中,直线y=$\frac{1}{2}$x+1与抛物线y=-x2+bx+c交于A,B两点,点A在y轴上,点B的横坐标为$\frac{7}{2}$,点P是直线AB上方的抛物线上的一动点(不与点A,B重合),作PC⊥AB于点C.
(1)求抛物线的解析式;
(2)设点P的横坐标为m.①用含m的代数式表示PC的长;②求PC长的最大值;
(3)如图2,连接PA,若∠PAB=45°,求点P的坐标.

查看答案和解析>>

同步练习册答案