精英家教网 > 初中数学 > 题目详情

若一个三角形 三个内角度数的比为2︰7︰4,那么这个三角形是(   )

A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形

C

解析试题分析:∵一个三角形 三个内角度数的比为2︰7︰4,而三个内角度数之和为180度;∴这个三角形最大的角=;所以它是钝角三角形
考点:判断三角形的形状
点评:考察三角形形状的判定,解决本题的关键是考生对三角形形状的判定方法要熟练

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;
(2)在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上城区二模)如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.已知△ABC中,∠A<∠B<∠C.
(1)利用直尺和圆规,在图②中作出△ABC的自相似点P(不写作法,但需保留作图痕迹);
(2)若△ABC的三内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•南京)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;
(2)在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省杭州市上城区中考二模数学试卷(带解析) 题型:解答题

如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
已知△ABC中,∠A<∠B<∠C
(1)利用直尺和圆规,在图②中作出△ABC的自相似点P(不写作法,但需保留作图痕迹);
(2)若△ABC的三内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省杭州市上城区中考二模数学试卷(解析版) 题型:解答题

 如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.

已知△ABC中,∠A<∠B<∠C

(1)利用直尺和圆规,在图②中作出△ABC的自相似点P(不写作法,但需保留作图痕迹);

(2)若△ABC的三内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.

 

查看答案和解析>>

同步练习册答案