解:(1)∵AH∶AC=2∶3,AC=6, ∴AH=AC=×6=4, 又∵HF∥DE, ∴HG∥CB, ∴△AHG∽△ACB, ∴,即, ∴HG=, ∴; (2)①能为正方形; ∵HH′∥CD,HC∥H′D, ∴四边形CDH′H为平行四边形, 又∠C=90°, ∴四边形CDH′H为矩形, 又CH=AC-AH=6-4=2, ∴当CD=CH=2时,四边形CDH′H为正方形, 此时可得t=2秒时,四边形CDH′H为正方形; ②(Ⅰ)∵∠DEF=∠ABC, ∴EF∥AB, ∴当t=4秒时,直角梯形的腰EF与BA重合, 当0≤t≤4时,重叠部分的面积为直角梯形DEFH′的面积, 过F作FM⊥DE于M,=tan∠DEF=tan∠ABC=, ∴ME=FM=×2=,HF=DM=DE-ME=4-=, ∴直角梯形DEFH′的面积为(4+)×2=, ∴y=; (Ⅱ)∵当4<t≤5时,重叠部分的面积为四边形CBGH的面积-矩形CDH′H的面积, 而S四边形CBGH=S△ABC-S△AHG=×8×6-=, S矩形CDH′H=2t, ∴y=-2t; (Ⅲ)当5<t≤8时,如图,设H′D交AB于P,BD=8-t, 又, ∴PD=DB=(8-t), ∴重叠部分的面积y=S, △PDB=PD·DB=·(8-t)(8-t)=(8-t)2=t2-6t+24, ∴重叠部分面积y与t的函数关系式: 。 |
科目:初中数学 来源: 题型:
PE |
CE |
1 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
BC2+CD2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
DE |
BD |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com