精英家教网 > 初中数学 > 题目详情
如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3。
(1)延长HF交AB于G,求△AHG的面积;
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2)。
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由;
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系。
解:(1)∵AH∶AC=2∶3,AC=6,
∴AH=AC=×6=4,
又∵HF∥DE,
∴HG∥CB,
∴△AHG∽△ACB,
,即
∴HG=

(2)①能为正方形;
∵HH′∥CD,HC∥H′D,
∴四边形CDH′H为平行四边形,
又∠C=90°,
∴四边形CDH′H为矩形,
又CH=AC-AH=6-4=2,
∴当CD=CH=2时,四边形CDH′H为正方形,
此时可得t=2秒时,四边形CDH′H为正方形;
②(Ⅰ)∵∠DEF=∠ABC,
∴EF∥AB,
∴当t=4秒时,直角梯形的腰EF与BA重合,
当0≤t≤4时,重叠部分的面积为直角梯形DEFH′的面积,
过F作FM⊥DE于M,=tan∠DEF=tan∠ABC=
∴ME=FM=×2=,HF=DM=DE-ME=4-=
∴直角梯形DEFH′的面积为(4+)×2=
∴y=
(Ⅱ)∵当4<t≤5时,重叠部分的面积为四边形CBGH的面积-矩形CDH′H的面积,
而S四边形CBGH=S△ABC-S△AHG=×8×6-=
S矩形CDH′H=2t,
∴y=-2t;
(Ⅲ)当5<t≤8时,如图,设H′D交AB于P,BD=8-t,

∴PD=DB=(8-t),
∴重叠部分的面积y=S,
△PDB=PD·DB=·(8-t)(8-t)=(8-t)2=t2-6t+24,
∴重叠部分面积y与t的函数关系式:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)当∠BAC=90°时,求证:
PE
CE
=
1
2

(3)如图2,当PC是圆O的切线,E为AD中点,BC=8,求AD的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说精英家教网明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>
BC2+CD2

(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=
DE
BD
.如图2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.
(1)求证:∠AOC=90°+
12
∠ABC;
(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案