精英家教网 > 初中数学 > 题目详情

在如图,在△ABC中,∠BAC=90°,AB=4 cm,AC=6 cm,AM是中线.

(1)以点A为圆心,以4 cm长为半径作⊙A,则点B、C、M与⊙A的位置关系如何?

(2)若以点A为圆心作⊙A,使B、C、M三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南平)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.
(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)
答:结论一:
AB=AC
AB=AC

结论二:
∠AED=∠ADC
∠AED=∠ADC

结论三:
△ADE∽△ACD
△ADE∽△ACD

(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此时BD的长.
(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)

查看答案和解析>>

科目:初中数学 来源:2013年辽宁省辽阳市高级中等学校招生考试数学 题型:044

定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”

性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等,

理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD

应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O,

(1)求证:△AOB和△AOE是“友好三角形”;

(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积,

探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:江苏期中题 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH?H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH?重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

同步练习册答案