精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.
(1)求证:△BDG∽△DEG;
(2)若EG•BG=4,求BE的长.
 
(1)见解析
(2)4
(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,
∴△BCE≌△DCF,
∴∠FDC=∠EBC,
∵BE平分∠DBC,
∴∠DBE=∠EBC,
∴∠FDC=∠EBD,
∵∠DGE=∠DGE,
∴△BDG∽△DEG.
(2)解:∵△BCE≌△DCF,
∴∠F=∠BEC,∠EBC=∠FDC,
∵四边形ABCD是正方形,
∴∠DCB=90°,∠DBC=∠BDC=45°,
∵BE平分∠DBC,
∴∠DBE=∠EBC=22.5°=∠FDC,
∴∠BEC=67.5°=∠DEG,
∴∠DGE=180°﹣22.5°﹣67.5°=90°,
即BG⊥DF,
∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,
∴∠BDF=∠F,
∴BD=BF,
∴DF=2DG,
∵△BDG∽△DEG,BG×EG=4,
=
∴BG×EG=DG×DG=4,
∴DG2=4,
∴DG=2,
∴BE=DF=2DG=4.
 
(1)根据旋转性质求出∠EDG=∠EBC=∠DBE,根据相似三角形的判定推出即可;
(2)先求出BD=BF,BG⊥DF,求出BE=DF=2DG,根据相似求出DG的长,即可求出答案.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.
 
(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:  
(2)如图1,设AB=1,请你说明为什么k约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该矩形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;
(4)图3中的△ABC的黄金分割线有几条?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住.为了寻找这只老鼠,猫头鹰向上飞至树顶C处.DF=4米,短墙底部D与树的底部A间的距离为2.7米,猫头鹰从C点观察F点的俯角为53°,老鼠躲藏处M (点M在DE上)距D点3米.
(参考数据:sin 37°≈0.60, cos 37°≈0.80,tan 37°≈0.75)
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少再要飞多少米(精确到0.1米)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题


A.30°B.120°C.150°D.60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图中的两个多边形分别是幻灯片上的多边形ABCDEF和银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗?在如图的两个多边形中,是否有相等的内角?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,若两个多边形相似,则x=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列线段能构成三角形的是(  )
A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是(  )
A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC

查看答案和解析>>

同步练习册答案