精英家教网 > 初中数学 > 题目详情
如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为    s时,BP与⊙O相切.
【答案】分析:根据切线的判定与性质进行分析即可.若BP与⊙O相切,则∠OPB=90°,又因为OB=2OP,可得∠B=30°,则∠BOP=60°;根据弧长公式求得长,除以速度,即可求得时间.
解答:解:连接OP;
∵当OP⊥PB时,BP与⊙O相切,
∵AB=OA,OA=OP,
∴OB=2OP,∠OPB=90°;
∴∠B=30°;
∴∠O=60°;
∵OA=3cm,
==π,圆的周长为:6π,
∴点P运动的距离为π或6π-π=5π;
∴当t=1或5时,有BP与⊙O相切.
点评:本题考查了切线的判定与性质及弧长公式的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为5,AB=5
3
,C是圆上一点,则∠ACB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为3,直径AB⊥弦CD,垂足为E,点F是BC的中点,那么EF2+OF2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为
5
,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有
 
个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为13cm,弦AB∥CD,两弦位于圆心O的两侧,AB=24cm,CD=10cm,求AB和CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为5,P是弦MN上的一点,且MP:PN=1:2.若PA=2,则MN的长为
6
2
6
2

查看答案和解析>>

同步练习册答案