精英家教网 > 初中数学 > 题目详情
3、如图,从等腰△ABC底边BC上任意一点D分别作两腰的平行线DE、DF,分别交AC、AB于点E、F,则?AFDE的周长等于这个等腰三角形的(  )
分析:根据等腰三角形的性质可得到两底角相等,再根据平行四边形的性质可推出DE=EC,根据平行四边形的周长公式不难求解.
解答:解:∵AB=AC,
∴∠B=∠C,
∵DE∥AB,
∴∠B=∠EDC,
∴DE=EC,
∵四边形AEDF是平行四边形,
∴DE=AF,
∴AF=CE,
∴?AEDF的周长=2(AF+AE)=2AC.
故选C.
点评:此题主要考查等腰三角形的性质及平行四边形的性质的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,点P从点B开始沿BC边以每秒1cm的速度向点C运动,点Q从点C开始沿CA边以每秒2 cm的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q精英家教网运动到点A时,点Q、p停止运动,设它们运动的时间为x cm.
(1)当x=
 
秒时,射线DE经过点C;
(2)当点Q运动时,设四边形ABPQ的面积为ycm2,求y与x的函数关系式(不用写出自变量取值范围);
(3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•闸北区二模)如图,在等腰△ABC中,AB=AC=10cm,cosB=
45
,点G是△ABC的重心.动点E从点A出发沿着射线AG以每秒1cm的速度移动,动点F从点C出发沿着射线CA以每秒2cm的速度移动,点E和点F同时出发,设它们的运动时间为t(秒).
(1)求点A到点G的距离;
(2)在移动过程中,是否存在以点G为圆心GE长为半径的圆与以点C为圆心CF长为半径的圆外切?若存在,求出t值;若不存在,请说明理由;
(3)连接EF,在运动过程中,是否存在△AEF是等腰三角形?若存在,求出t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,从等腰△ABC底边BC上任意一点D分别作两腰的平行线DE、DF,分别交AC、AB于点E、F,则?AFDE的周长等于这个等腰三角形的


  1. A.
    周长
  2. B.
    周长的一半
  3. C.
    一条腰长的2倍
  4. D.
    一条腰长

查看答案和解析>>

科目:初中数学 来源:《第1章 证明(二)》2010年复习学案试卷(解析版) 题型:选择题

如图,从等腰△ABC底边BC上任意一点D分别作两腰的平行线DE、DF,分别交AC、AB于点E、F,则?AFDE的周长等于这个等腰三角形的( )

A.周长
B.周长的一半
C.一条腰长的2倍
D.一条腰长

查看答案和解析>>

同步练习册答案