【题目】已知,O为直线AB上一点,∠DOE=90°.
(1)如图1,若∠AOC=130°,OD平分∠AOC.
①求∠BOD的度数;
②请通过计算说明OE是否平分∠BOC.
(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.
【答案】(1)①115°;②答案见解析;(2)∠AOD=50°
【解析】试题分析:(1)①先求出∠AOD的度数,再根据邻补角求出∠BOD即可;
②分别求出∠COE,∠BOE的度数即可作出判断;
(2)由已知设∠BOE=2x,则∠AOE=7x, 再根据∠BOE+∠AOE=180°,求出∠BOE=40°,再根据互余即可求出∠AOD=90°-40°=50°.
试题解析:(1)①∵OD平分∠AOC,∠AOC=130°,
∴∠AOD=∠DOC=∠AOC=×130°=65°,
∴∠BOD=180°-∠AOD=180°-65°=115°;
②∵∠DOE=90°,又∠DOC=65°,
∴∠COE=∠DOE-∠DOC=90°-65°=25°,
∵∠BOD=115°,∠DOE=90°,
∴∠BOE=∠BOD-∠DOE=115°-90°=25°,
∴∠COE=∠BOE,
即OE平分∠BOC;
(2)若∠BOE:∠AOE=2:7,
设∠BOE=2x,则∠AOE=7x,
又∠BOE+∠AOE=180°,∴2x+7x=180°,
∴x=20°,∠BOE=2x=40°,
∵∠DOE=90°,
∴∠AOD=90°-40°=50°.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是2,点E是射线AB上一动点(点E与点A、B不重合),过点E作FG⊥DE交射线CB于点F、交DA的延长线于点G.
(1)求证:DE=GF.
(2)连结DF,设AE=x,△DFG的面积为y,求y与x之间的函数解析式.
(3)当Rt△AEG有一个角为30°时,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.
(1)直接写出y与x之间的函数关系式;
(2)分别求出第10天和第15天的销售金额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为( )
A.0.13×105
B.1.3×104
C.1.3×105
D.13×103
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③同旁内角互补;④垂直于同一条直线的两条直线垂直.其中的假命题有( )
A.4 个B.3 个C.2 个D.1 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;
小明同学探究此问题的方法是:
过P点作PE⊥DC于E点,PF⊥BC于F点,
根据正方形的性质和角平分线的性质,得出PE=PF,
再证明△PEQ≌△PFB,可得出结论,他的结论应是
(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com