精英家教网 > 初中数学 > 题目详情
19.如图,?ABCD中,∠B=30°,AB=4,BC=5,则?ABCD的面积为10.

分析 直接利用直角三角形的性质得出平行四边形的高,进而求出其面积.

解答 解:作AE⊥BC于E,如图所示:
∵在?ABCD中,AB=4,BC=5,∠B=30°,
∴AE=$\frac{1}{2}$AB=2,
∴?ABCD的面积为:2×5=10;
故答案为:15.

点评 此题主要考查了平行四边形的性质、直角三角形的性质,正确得出平行四边形的高是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:
(1)6-2$\sqrt{\frac{3}{2}}$-3$\sqrt{\frac{3}{2}}$     
(2)4$\sqrt{5}$+$\sqrt{45}$-$\sqrt{8}$+4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)$\sqrt{18}$-$\sqrt{8}$
(2)$\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列各数中,$\sqrt{3}$,$\sqrt{\frac{1}{2}}$,$\sqrt{8}$,$\sqrt{0.1}$,是最简二次根式的是(  )
A.$\sqrt{3}$B.$\sqrt{\frac{1}{2}}$C.$\sqrt{8}$D.$\sqrt{0.1}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(ka+b,kb+a)(k为常数,k≠0),则称点P′和点P的“k交融点”,例如:P(1,4)的“2的交融点”为P′(2×1+4,2×4+1),即P′(6,9)
(1)①点P(-1,-2)的“2的交融点”P′的坐标为(-4,-5)
②若点P的“3的交融点”为P′(3,3),求点P的坐标.
(2)若点P在x轴的正半轴上,点P的“k交融点”为P′点,且△OPP′为等腰三角形,则k的值为$\frac{1}{2}$或1
(3)点Q的坐标为(0,4$\sqrt{3}$),点A在函数y=$\frac{\sqrt{3}}{2}$x的图象上,且点A是点B的“$\sqrt{3}$交融点”,当线段BQ最短时,求B点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.化简:$\sqrt{\frac{3}{4}}$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)$\sqrt{18}$×$\sqrt{3}$-$\sqrt{24}$
(2)$\sqrt{(\sqrt{3}+2)^{2}}$+$\sqrt{(\sqrt{3}-2)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:$\sqrt{27}$-$\sqrt{12}$+$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:$\sqrt{12}$-$\frac{3}{\sqrt{3}}$-$\sqrt{(1-\sqrt{3})^{2}}$.

查看答案和解析>>

同步练习册答案