【题目】在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,CE=2cm.
求:(1)∠AEB 度数.
(2)BC的长.
科目:初中数学 来源: 题型:
【题目】如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB中点,在“①DE=AC;②DE⊥AC;③∠EAF=∠ADE;④∠CAB=30°”这四个结论中,正确的个数有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连结CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是_____________________(不添加辅助线).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边 且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,∠BAC=90°,AB=AC,F是BC上一点,BDAF的延长线与D,CEAF于E,已知CE=5,BD=2,ED=__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.
(1)在图中当CE=CF时,求证:AF是∠BAD的平分线.
(2)在(1)的条件下,若∠ABC=90°,G是EF的中点(如图),请求出∠BDG的度数.
(3)如图,在(1)的条件下,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.
(1)求证:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于,两点,交轴于点.
求抛物线的解析式;
点是第二象限内一点,过点作轴交抛物线于点,过点作轴于点,连接、,若.求的值并直接写出的取值范围(利用图完成你的探究).
如图,点是线段上一动点(不包括点、),轴交抛物线于点,,交直线于点,设点的横坐标为,求的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com