精英家教网 > 初中数学 > 题目详情
一块长为5米,宽为2米的长方形木板,现要在长边上截去长为x米的一小长方形(如图),则剩余木板的面积y(平方米)与x(米)之间的关系式为(  )
A.y=2xB.y=10-2xC.y=5xD.y=10-5x

由题意,有
y=2(5-x),
即y=10-2x.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

暑假期间,王红随爸爸妈妈到一个著名森林风景区旅游,导游提醒大家上山要多带一件衣服,并介绍山区气温会随着海拔高度的增加而下降,沿途王红利用随身带的登山表(具有测定当前位置的海拔高度和气温等功能)测得以下的数据:
海拔高度x(米)300400500600700
气温y(℃)29.228.628.027.426.8
(1)设海拔高度为x(米),气温为y(℃),根据上表提供的数据在下列直角坐标系中描点并连线;
(2)观察(1)中所画出的图象,猜想y与x之间函数关系,求出所猜想的函数关系表达式;
(3)如果王红到达山顶时,只告诉你山顶的气温为20.2℃,请计算此风景区山顶海拔高度大约是多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.
(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式______;
(2)求乙组加工零件总量a的值;
(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线OQ的函数解析式为y=x.
下表是直线a的函数关系中自变量x与函数y的部分对应值.
x-1123
y8420
设直线a与x轴交点为B,与直线OQ交点为C,动点P(m,0)(0<m<3)在OB上移动,过点P作直线l与x轴垂直.
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上;
(2)求点C的坐标;
(3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,A点坐标为(0,6),B点坐标为(8,0),点P沿射线BO以每秒2个单位的速度匀速运动,同时点Q从A到O以每秒1个单位的速度匀速运动,当点Q运动到点O时两点同时停止运动.

(1)设P点运动时间为t秒,M为PQ的中点,请用t表示出M点的坐标为______;
(2)设△BPM的面积为S,当t为何值时,S有最大值,最大值为多少?
(3)请画出M点的运动路径,并说明理由;
(4)若以A为圆心,AQ为半径画圆,t为何值时⊙A与点M的运动路径只有一个交点?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某人计划购买一套没有装修的门市房,它的地面图形是正方形,若正方形的边长为x米,则办理产权费用需1000x元.装修费用yl(元)与x(米)的函数关系如图所示.
(1)求yl与x的函数关系式;
(2)装修后将此门市房出租,租期五年,租金以每年每平方米200元计算.
①求五年到期时,由此门市房所获利润y(元)与x(米)的函数关系式;
②若五年到期时,按计划他将由此门市房赚取利润70000元,求此门市房的面积.(利润=租金-办理产权费用与装修费用之和)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速往返两地.甲车先到达B地,停留1小时后按原路返回.设两车行驶的时间为x小时,离开A地的距离是y千米,如图是y与x的函数图象

(1)计算甲、乙两车的速度;
(2)几小时后两车相遇;
(3)在从开始出发到两车相遇的过程中,设两车之间的距离为s千米,乙车行驶的时间为t小时,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,lA与lB分别是根据A步行与B骑自行车在同一路上行驶的路程S与时间t的关系式所作出的图象,
(1)B出发时与A相距______千米;骑了一段路后,自行车发生故障,进行修理,所用的时间是______小时;B从起点出发后______小时与A相遇;
(2)求出A行走的路程S与时间t的函数关系式(不写定义域);
(3)假设B的自行车没有发生故障,保持出发时的速度前进,______小时与A相遇,相遇点离B的出发点______千米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)画直线y=-2x+7的图象;
(2)求这直线与x轴的交点坐标A,与y轴的交点坐标B;
(3)若O是原点,求△AOB的面积;
(4)利用图象求二元一次方程2x+y=7的正整数解.并把方程的解所对应的点在图象上表示出来.

查看答案和解析>>

同步练习册答案