精英家教网 > 初中数学 > 题目详情

【题目】如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:
①⊙O的半径为 ②OD∥BE ③PB= ④tan∠CEP=
其中正确结论有( )

A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:作DK⊥BC于K,连接OE.
∵AD、BC是切线,
∴∠DAB=∠ABK=∠DKB=90°,
∴四边形ABKD是矩形,
∴DK=AB,AD=BK=4,
∵CD是切线,
∴DA=DE,CE=CB=9,
在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,
∴DK= =12,
∴AB=DK=12,
∴⊙O半径为6.故①错误,
∵DA=DE,OA=OE,
∴OD垂直平分AE,同理OC垂直平分BE,
∴AQ=QE,∵AO=OB,
∴OD∥BE,故②正确.
在RT△OBC中,PB= = = ,故③正确,
∵CE=CB,
∴∠CEB=∠CBE,
∴tan∠CEP=tan∠CBP= = = ,故④正确,
∴②③④正确,
故选C.

本题考查切线的性质、圆周角定理、切线长定理、勾股定理、三角形中位线性质、直角三角形斜边上的高的求法等知识,解题的关键是添加辅助线构造直角三角形解决问题,熟练掌握切线长定理,属于中考常考题型.作DK⊥BC于K,连接OE,①错误,在RT△CDK中,利用勾股定理求得DK=12,故错误.②正确.可以证明AQ=QE,AO=OB,由此得出结论.③正确.根据PB= 计算即可.④正确.根据tan∠CEP=tan∠CBP= 计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.

请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是
(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)此次共调查了多少人?
(2)求文学社团在扇形统计图中所占圆心角的度数;
(3)请将条形统计图补充完整;
(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.

(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)
(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,a)是反比例函数y=﹣ 的图象上一点,直线y=﹣ 与反比例函数y=﹣ 的图象在第四象限的交点为点B.

(1)求直线AB的解析式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=﹣ x,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2 , 再过点A2作x轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3 , …,按此做法进行下去,点A2016的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).
(1)直接写出每天游客居住的房间数量y与x的函数关系式.
(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值: ,其中x是不等式组 的一个整数解.

查看答案和解析>>

同步练习册答案