8£®ÎÒ¹ú¹Å´úÊýѧ¼ÒÇؾÅÉØÔÚ¡¶ÊýÊé¾ÅÕ¡·ÖмÇÊöÁË¡°ÈýбÇó»ýÊõ¡±£¬¼´ÒÑÖªÈý½ÇÐεÄÈý±ß³¤£¬ÇóËüµÄÃæ»ý£®ÓÃÏÖ´úʽ×Ó±íʾ¼´Îª£ºs=$\sqrt{\frac{1}{4}{{[a}^{2}b}^{2}{-£¨\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2}£©}^{2}]}$£¨ÆäÖÐa¡¢b¡¢cΪÈý½ÇÐεÄÈý±ß³¤£¬sΪÃæ»ý£©£®ÈôÒÑÖªÈý½ÇÐεÄÈý±ß³¤·Ö±ðΪ5£¬6£¬7£¬ÊÔÔËÓù«Ê½¼ÆËã¸ÃÈý½ÇÐεÄÃæ»ýs£®

·ÖÎö ¸ù¾ÝÌâÄ¿ÖеĹ«Ê½¼´¿É½â´ð±¾Ì⣮

½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ£¬
Èý½ÇÐεÄÈý±ß³¤·Ö±ðΪ5£¬6£¬7£¬
Ôò¸ÃÈý½ÇÐεÄÃæ»ýs=$\sqrt{\frac{1}{4}[{5}^{2}¡Á{6}^{2}-£¨\frac{{5}^{2}+{6}^{2}-{7}^{2}}{2}£©^{2}]}$=$\frac{1}{2}\sqrt{25¡Á36-£¨\frac{12}{2}£©^{2}}$=$\frac{1}{2}\sqrt{25¡Á36-36}$=$\frac{1}{2}¡Á12\sqrt{6}=6\sqrt{6}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Î¸ùʽµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊÇÃ÷È·¶þ´Î¸ùʽµÄ»¯¼òµÄ·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬BC=5cm£¬AC=12cm£¬ÒÔAB³¤ÎªÖ±¾¶×÷Ô²¡ÑO£¬×÷ÏÒCD=AC£¬CE¡ÍDBµÄÑÓ³¤ÏßÓÚµãE£®
£¨1£©ÇóÖ¤£º¡ÏABC=¡ÏCAD£»
£¨2£©ÇóÖ¤£ºCEÊÇ¡ÑOµÄÇÐÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¾ÓÃñÇøÄڵĹ㳡ÎèÒýÆðÁËýÌå¹Ø×¢£¬Ð¡Ã÷ÏëÁ˽ⱾСÇø¾ÓÃñ¶Ô¹ã³¡ÎèµÄ¿´·¨£¬½øÐÐÁËÒ»´Î³éÑùµ÷²é£¬°Ñ¾ÓÃñ¶Ô¹ã³¡ÎèµÄ¿´·¨·ÖΪµÍ¸÷²ã´Î£ºA£®·Ç³£ÔÞͬ£»B£®ÔÞͬµ«ÒªÓÐʱ¼äÏÞÖÆ£»C£®ÎÞËùν£»D£®²»ÔÞͬ£®²¢½«µ÷²é½á¹û»æÖƳÉÁËͼ1ºÍͼ2Á½·ù²»ÍêÕûµÄͳ¼Æͼ£®

ÇëÄã¸ù¾ÝͼÖеÄÐÅÏ¢»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©Ç󱾴α»³é²éµÄ¾ÓÃñÓжàÉÙ£¿
£¨2£©½«Í¼1ºÍͼ2²¹³äÍêÕû£»
£¨3£©Çóͼ2ÖС°C¡±²ã´ÎËùÔÚÉÈÐεÄÔ²ÐĽǶÈÊý£»
£¨4£©¹À¼Æ¸ÃСÇø4000Ãû¾ÓÃñÖжԹ㳡ÎèµÄ¿´·¨±íʾÔÞͬ£¨°üÀ¨A²ã´ÎºÍB²ã´Î£©µÄÈËÊý´óÔ¼¶àÉÙÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®£¨1£©½â·½³Ì×飺$\left\{\begin{array}{l}{x+y=5}\\{2x-y=1}\end{array}\right.$  
£¨2£©½â²»µÈʽ×飺$\left\{\begin{array}{l}2x+1£¾-3\\-x+3¡Ý0\end{array}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ1ÊÇÒ»¸ö³¤Îª2m¡¢¿íΪ2nµÄ³¤·½ÐΣ¬ÑØͼÖÐÐéÏßÓüôµ¶Æ½¾ù·Ö³ÉËÄ¿éС³¤·½ÐΣ¬È»ºó°´Í¼2µÄÐÎ×´Æ´³ÉÒ»¸öÕý·½ÐΣ®
£¨1£©Í¼2ÖмäµÄСÕý·½ÐΣ¨¼´ÒõÓ°²¿·Ö£©Ãæ»ý¿É±íʾΪ£¨m-n£©2£®
£¨2£©¹Û²ìͼ2£¬ÇëÄãд³öÈý¸ö´úÊýʽ£¨m+n£©2£¬£¨m-n£©2£¬mnÖ®¼äµÄµÈÁ¿¹Øϵʽ£º£¨m+n£©2=£¨m-n£©2+4mn£®
£¨3£©¸ù¾Ý£¨2£©ÖеĽáÂÛ£¬Èôx+y=-6£¬xy=2.75£¬Ôòx-y=¡À5£®
£¨4£©ÓÐÐí¶à´úÊýºãµÈʽ¿ÉÒÔÓÃͼÐεÄÃæ»ýÀ´±íʾ£®Èçͼ3Ëùʾ£¬Ëü±íʾÁË£¨2m+n£©£¨m+n£©=2m2+3mn+n2£®ÊÔ»­³öÒ»¸ö¼¸ºÎͼÐΣ¬Ê¹ËüµÄÃæ»ýÄܱíʾΪ£¨m+n£©£¨m+2n£©=m2+3mn+2n2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½â·½³Ì×é
£¨1£©$\left\{\begin{array}{l}2x+y=3\\ x-2y=1\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}x+\frac{1}{4}y=9\\ \frac{1}{5}x+y=17\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¼ÆËã
£¨1£©£¨2-¦Ð£©0+£¨$\frac{1}{3}$£©-2+£¨-2£©3
£¨2£©0.5200¡Á£¨-2£©202
£¨3£©£¨-2x3£©2•£¨-x2£©¡Â[£¨-x£©2]3
£¨4£©£¨3x-1£©£¨x+1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬Èç¹û¡ÏAED=¡ÏC£¬¡ÏDEF=¡ÏB£¬ÊÔ˵Ã÷¡Ï1Óë¡Ï2ÏàµÈµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚÒ»´Î¡°°®ÐÄ»¥Öú¡±¾è¿î»î¶¯ÖУ¬Ä³°àµÚһС×é8Ãûͬѧ¾è¿îµÄ½ð¶î£¨µ¥Î»£ºÔª£©Èç±íËùʾ£®ÔòÕâ8Ãûͬѧ¾è¿îµÄƽ¾ù½ð¶îΪ£¨¡¡¡¡£©
½ð¶î/Ôª5678
ÈËÊý2321
A£®6.25ÔªB£®6.5ÔªC£®3.5ÔªD£®7Ôª

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸