精英家教网 > 初中数学 > 题目详情
14.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
 

分析 (1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;
(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.

解答 解:(1)如图1,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案为:∠A+∠C=90°;

(2)如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;

(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.

点评 本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=45°,∠C=75°,求∠DAE,∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某种T型零件尺寸如图所示(左右宽度相同),求:
(1)阴影部分的周长是多少?(用含x,y的代数式表示)
(2)阴影部分的面积是多少?(用含x,y的代数式表示)
(3)x=2,y=3.5时,计算阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,CE⊥BA的延长线于E,BF⊥CA的延长线于F,M为BC的中点,分别连接ME、MF、EF.
(1)若EF=3,BC=10,求△EFM的周长;
(2)若∠ABC=29°,∠ACB=46°,求∠EMF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.平面上有四个点A、B、C、D,按照以下要求作图:
(1)连接AB并延长AB至E,使BE=AB;
(2)作射线CB;
(3)在直线BD上确定点G,使得AG+GC最短.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:
①AE=CF;  
②△EPF是等腰直角三角形;
③S四边形AEPF=$\frac{1}{2}$S△ABC;  
④BE+CF=EF.
⑤当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合).
上述结论中始终正确的有①②③(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,正方形ABCD的顶点A,C分别在x轴,y轴正半轴上,点B的坐标为(10,10),以点C为圆心,CB为半径画弧OB.
(1)以OA为直径的半圆M与弧OB交于点G,连接CG.
①判断CG与⊙M的位置关系,并证明你的结论;
②求G的坐标.
(2)设E(a,b)是$\widehat{OB}$上一动点,且a、b是方程x2-8x+k=0的两根,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,小高同学在太阳光下的影子是线段AB.小高身高为1.6m,其影长是2m.
(1)在图中画出此时木杆CD在太阳光下的影子.
(2)木杆落在地面上的影长是5m,落在墙上的影长是1.8m,请你帮小高算出木杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.方程组$\left\{\begin{array}{l}{{x}^{2}+2xy-2x-4=0}\\{xy+2{y}^{2}-2y+2=0}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案