精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2+(2k+1)x+k2-2=0有两个不相等的实数根,
(1)试求k的取值范围;
(2)是否存在实数k,使得此方程两根的平方和等于11?若存在,求出相应的k值;若不存在,说明理由.
分析:(1)一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于k的不等式,求出k的取值范围;
(2)设两根为a、b,根据根与系数的关系可得a+b=-(2k+1),ab=k2-2,则a2+b2=(a+b)2-2ab=[-(2k+1)]2-2(k2-2)=2k2+4k+5,由题意得2k2+4k+5=11,求解即可.
解答:解:(1)∵方程有两个不相等的实数根,
∴△=b2-4ac=(2k+1)2-4(k2-2)=4k+9>0,
解得:k>-
9
4


(2)存在.设两根为a、b,根据根与系数的关系可得a+b=-(2k+1),ab=k2-2,
则a2+b2=(a+b)2-2ab=[-(2k+1)]2-2(k2-2)=2k2+4k+5,
由题意得2k2+4k+5=11,
解得k=-3或1,
∵k>-
9
4

∴当k=1,此方程两根的平方和等于11.
点评:此题主要考查一元二次方程根的情况与判别式△的关系以及根与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案