已知在△ABC中,AB=8,BC=15,AC=17,则下列结论错误的是( ).
A.△ABC是直角三角形,且∠B=90°
B.△ABC是直角三角形,且∠A=60°
C.△ABC是直角三角形,且AC是它的斜边
D.△ABC的面积为60
科目:初中数学 来源: 题型:
如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]
请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述).
图1 图2
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.
[知识拓展]
利用图2中的直角梯形,我们可以证明.其证明步骤如下:
∵BC=a+b,AD=__________,
又∵在直角梯形ABCD中有BC__________AD(填大小关系),即__________,
∴.
查看答案和解析>>
科目:初中数学 来源: 题型:
某市为严禁酒后驾驶与超速行驶,切实保障交通安全,加强了各项交通督查力度.某次将雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):
数据段 | 频数 | 频率 |
30~40 | 10 | 0.05 |
40~50 | 36 | |
50~60 |
| 0.39 |
60~70 |
| |
70~80 | 20 | 0.10 |
总计 |
| 1 |
注:30~40为时速大于等于30千米而小于40千米,其他类同.
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com