精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,﹣1),且对称轴为在线x=2,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为m.

(1)求这条抛物线所对应的函数关系式;

(2)求点Q的坐标(用含m的式子表示);

(3)请探究PA+QB=AB是否成立,并说明理由;

(4)抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,若其对称轴把四边形PAQB分成面积为1:5的两部分,直接写出此时m的值.


解:(1)∵抛物线y=x2+bx+c经过点(1,﹣1),且对称轴为在线x=2,

解得

∴这条抛物线所对应的函数关系式y=x2﹣4x+2;

 

(2)∵抛物线上点P的横坐标为m,

∴P(m,m2﹣4m+2),

∴PA=m﹣2,

QB=PA+1=m﹣2+1=m﹣1,

∴点Q的横坐标为2﹣(m﹣1)=3﹣m,

点Q的纵坐标为(3﹣m)2﹣4(3﹣m)+2=m2﹣2m﹣1,

∴点Q的坐标为(3﹣m,m2﹣2m﹣1);

 

(3)PA+QB=AB成立.

理由如下:∵P(m,m2﹣4m+2),Q(3﹣m,m2﹣2m﹣1),

∴A(2,m2﹣4m+2),B(2,m2﹣2m﹣1),

∴AB=(m2﹣2m﹣1)﹣(m2﹣4m+2)=2m﹣3,

又∵PA=m﹣2,QB=m﹣1,

∴PA+QB=m﹣2+m﹣1=2m﹣3,

∴PA+QB=AB;

 

(4)∵抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,

∴抛物线y=a1x2+b1x+c1的对称轴为QB的垂直平分线,

∵对称轴把四边形PAQB分成面积为1:5的两部分,

××=×(2m﹣3)×(2m﹣3),

整理得,(2m﹣3)(m﹣3)=0,

∵点P位于对称轴右侧,

∴m>2,

∴2m﹣3≠0,

∴m﹣3=0,

解得m=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


若用湘教版初中数学教材上使用的某种计算器进行计算,则按键的结果为(  )

 

A.

21

B.

15

C.

84

D.

67

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为39°,且高CD为1.5米,求建筑物的高度AB.(结果精确到0.1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)

查看答案和解析>>

科目:初中数学 来源: 题型:


下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A.     B.                                             C.    D.

查看答案和解析>>

科目:初中数学 来源: 题型:


若菱形的周长为20cm,则它的边长是   cm.

查看答案和解析>>

科目:初中数学 来源: 题型:


为迎接“2014丹东港鸭绿江国际马拉松赛”,丹东新区今年投入约4000万元用于绿化美化.4000万用科学记数法表示为

A. 4×106       B. 4×107           C. 4×108              D. 0.4×107

查看答案和解析>>

科目:初中数学 来源: 题型:


在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为____________.

查看答案和解析>>

同步练习册答案