精英家教网 > 初中数学 > 题目详情
在△ABC中,若|sinA-|+(-cosB)2=0,∠A,∠B都是锐角,则∠C的度数是( )
A.75°
B.90°
C.105°
D.120°
【答案】分析:本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0.”分别求出∠A、∠B的值.然后用三角形内角和定理即可求出∠C的值.
解答:解:∵|sinA-|=0,(-cosB)2=0,
∴sinA-=0,-cosB=0,
∴sinA==cosB,
∴∠A=45°,∠B=30°,
∴∠C=180°-∠A-∠B=105°.
故选C.
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式、绝对值、非负数等考点的运算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、在△ABC中,若AB=AC,∠A+∠B=110°,则∠A=
40°
,∠B=
70°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,若|2cosA-1|+(
3
-tanB )2=0,则∠C=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,若AB=BC=CA=a,则△ABC的面积为
3
4
a2
3
4
a2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)在△ABC中,若∠A=70°,∠B=45°,则∠C=
65
65
°.
(2)在△ABC中,若∠A=30°,∠B=∠C,则∠B=
75
75
°.

查看答案和解析>>

同步练习册答案