【题目】如图,已知等腰△ABC中,AB=AC.以C为圆心,CB的长为半径作弧,交AB于点D.分别以B、D为圆心,大于BD的长为半径作弧,两弧交于点E.作射线CE交AB于点M.分别以A、C为圆心,CM、AM的长为半径作弧,两弧交于点N.连接AN、CN
(1)求证:AN⊥CN
(2)若AB=5,tanB=3,求四边形AMCN的面积.
【答案】(1)详见解析;(2)12.
【解析】
(1)由作图可知四边形AMCN是平行四边形,CM⊥AB,据此即可得答案;
(2)在Rt△CBM中,利用tan∠B==3,由此可以设BM=k,CM=3k,表示出AM,然后在Rt△ACM中,利用勾股定理求出k的值,继而求得CM=3,AM=4,利用矩形面积公式即可求得答案.
(1)由作图可知:CN=AM,AN=CM,
∴四边形AMCN是平行四边形,
∵CM⊥AB,
∴∠AMC=90°,
∴四边形AMCN是矩形,
∴∠ANC=90°,
∴AN⊥CN.
(2)在Rt△CBM中,∵tan∠B==3,
∴可以假设BM=k,CM=3k,
∵AC=AB=5,
∴AM=5﹣k,
在Rt△ACM中,∵AC2=CM2+AM2,
∴25=(3k)2+(5﹣k)2,
解得k=1或0(舍弃),
∴CM=3,AM=4,
∴四边形AMCN的面积=CMAM=12.
科目:初中数学 来源: 题型:
【题目】如图所示,菱形ABOC,其一边OB在x轴上,将菱形ABOC绕点B顺时针旋转75°至FBDE的位置,若BO=2,∠A=120°,则点E的坐标为( )
A. ()B. ()C. ()D. ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①a﹣3b+2c>0;②3a﹣2b﹣c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8.其中正确的结论有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣(k+1)x+k2+1与x轴有交点.
(1)求k的取值范围;
(2)方程x2﹣(k+1)x+k2+1=0有两个实数根,分别为x1,x2,且方程x12+x22+15=6x1x2,求k的值,并写出y=x2﹣(k+1)x+k2+1的代数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CD⊥AB,垂足为D.
(1)求证:∠PCA=∠ABC;
(2)过点A作AE∥PC交⊙O于点E,交CD于点F,交BC于点M,若∠CAB=2∠B,CF=,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,过点A作⊙O的切线PA.
(1)求证:∠PAC=∠ABC;
(2)若∠PAC=30°,AC=3,求劣弧AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD,
(1)求证:AD=BE;
(2)当△ABC满足什么条件时四边形ABED是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+b(k,b为常数,k≠0)的图象与反比例函数y2=(m为常数,m≠0)的图象相交于点M(1,4)和点N(4,n).
(1)反比例函数与一次函数的解析式.
(2)函数y2=的图象(x>0)上有一个动点C,若先将直线MN平移使它过点C,再绕点C旋转得到直线PQ,PQ交x轴于点A,交y轴点B,若BC=2CA,求OAOB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com