精英家教网 > 初中数学 > 题目详情

作业宝如图所示,在梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,问:在线段AB上是否存在点P,使得以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似?若不存在,请说明理由;若存在,这样的点P共有几个?并请你求出AP的长.

解:若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,
=
=
∴AP2-7AP+6=0,
∴AP=1或AP=6,
检测:当AP=1时,由BC=3,AD=2,BP=6,
=
又∵∠A=∠B=90°,
∴△APD∽△BCP.
当AP=6时,由BC=3,AD=2,BP=1,
又∵∠A=∠B=90°,
∴△APD∽△BCP.
若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.
=
=
∴AP=
检验:当AP=时,∵BP=,AD=2,BC=3,
=
又∵∠A=∠B=90°,
∴△APD∽△BPC.
因此,点P的位置有三处,即在线段AP的长为1、、6处.
分析:根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.
点评:此题考查了相似三角形的判定和性质,根据P点不同位置进行分析,解题时要注意一题多解的情况,要注意别漏解是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,连接AC.
(1)求cos∠ACB的值;
(2)若E、F分别是AB、DC的中点,连接EF,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C?D?A?B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.则腰长是
 
.若P是梯形的对称轴L上的点,那么使△PDB为等腰三角形的点有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在梯形ABCD中,AB∥DC,EF是梯形的中位线,AC交EF于G,BD交EF于H,以下说法错误的是(  )

查看答案和解析>>

同步练习册答案