分析 连接PC,作PD⊥AB,PE⊥AC,PF⊥BC,垂足分别为D、E、F,由角平分线的性质可知PD=PE=PF,可设PD=PE=PF=r,再由三角形的面积公式即可得出结论.
解答 解:连接PC,作PD⊥AB,PE⊥AC,PF⊥BC,垂足分别为D、E、F,
∵点P是∠BAC,∠APC的角平分线的交点,
∴PD=PE=PF.
设PD=PE=PF=r,
∵AB=5,BC=3,AC=4,
∴$\frac{1}{2}$AC•BC=$\frac{1}{2}$AC•r+$\frac{1}{2}$BC•r+$\frac{1}{2}$AB•r=$\frac{1}{2}$r(AC+BC+AB),
即$\frac{1}{2}$×4×3=$\frac{1}{2}$r×(4+3+5),解得r=1,
∴点P到AB边的距离为1.
点评 本题考查的是角的平分线性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com