精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2-2(m+1)x+m2=0
(1)当m取何值时,方程有两个实数根;
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.
分析:(1)方程有两个实数根,必须满足△=b2-4ac≥0,从而建立关于m的不等式,求出实数m的取值范围.
(2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m>-
1
2
,在m>-
1
2
的范围内选取一个合适的整数求解就可以.
解答:解:(1)由题意知:△=b2-4ac=[-2(m+1)]2-4m2=[-2(m+1)+2m][-2(m+1)-2m]=-2(-4m-2)=8m+4≥0,
解得m≥-
1
2

∴当m≥-
1
2
时,方程有两个实数根.

(2)选取m=0.(答案不唯一,注意开放性)
方程为x2-2x=0,解答x1=0,x2=2.
点评:1、一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
2、第2小题属于开放题,注意答案的不唯一性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案