分析 首先连接OP、OQ,根据勾股定理知PQ2=OP2-OQ2,可得当OP⊥AB时,即线段PQ最短,然后由勾股定理即可求得答案.
解答 解:连接OP、OQ.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2-OQ2,
∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=3$\sqrt{2}$,
∴AB=$\sqrt{2}$OA=6,
∴OP=$\frac{OA•OB}{AB}$=3,
∴PQ=$\sqrt{O{P}^{2}-O{Q}^{2}}$=$\sqrt{7}$,
当点P与点B或点A重合时,PQ=$\sqrt{O{B}^{2}-O{Q}^{2}}$=4,
∴$\sqrt{7}$≤PQ≤4.
故答案为:$\sqrt{7}$≤PQ≤4.
点评 本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意得到当PO⊥AB时,线段PQ最短是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com