【题目】已知:如图,在□ABCD中,AE是BC边上的高,将沿方向平移,使点E与点C重合,得.
(1)求证:;
(2)若,当AB与BC满足什么数量关系时,四边形是菱形?并说明理由.
注:(直角三角形中30°角所对直角边等于斜边的一半).
【答案】(1)证明见解析;(2)当BC=AB时,四边形ABFG是菱形.
【解析】
试题分析:(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:DG=FC;即可得到BE=DG;
(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AB=CD.
∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.
∴CG⊥AD.
∴∠AEB=∠CGD=90°.
∵AE=CG,AB=CD,
∴Rt△ABE≌Rt△CDG.
∴BE=DG;
(2)当BC=AB时,四边形ABFG是菱形.
证明:∵AB∥GF,AG∥BF,
∴四边形ABFG是平行四边形.
∵Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∴BE=AB.(直角三角形中30°所对直角边等于斜边的一半)
∵BE=CF,BC=AB,
∴EF=AB.
∴AB=BF.
∴四边形ABFG是菱形.
科目:初中数学 来源: 题型:
【题目】(1)如图①,一个无盖的长方体盒子的棱长分别为,,,盒子的内部顶点处有一只昆虫甲,在盒子的内部顶点处有一只昆虫乙(盒壁的厚度忽略不计)假设昆虫甲在顶点处静止不动,请计算处的昆虫乙沿盒子内壁爬行到昆虫甲处的最短路程,并画出其最短路径,简要说明画法
(2)如果(1)问中的长方体的棱长分别为,,如图②,假设昆虫甲从盒内顶点以1厘米/秒的速度在盒子的内部沿棱向下爬行,同时昆虫乙从盒内顶点以3厘米/秒的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是( )
A. 2(1+x)2=2.88 B. 2x2=2.88 C. 2(1+x%)2=2.88 D. 2(1+x)+2(1+x)2=2.88
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为( )
A.1.5×108
B.1.5×109
C.0.15×109
D.15×107
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F.将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N, 有下列四个结论:① DF=CF;② BF⊥EN;③△BEN是等边三角形;④ S△BEF=3S△DEF. 其中,正确的结论有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com